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NORMAL QUINTIC ENRIQUES
SURFACES WITH MODULI NUMBER 6

YONGGU KIM

ABSTRACT. In this paper, we show one family of normal quintic surfaces
in P3 which are birationally isomorphic to Enriques surfaces. We prove
that the dimension of the moduli space of these Enriques surfaces is 6.

1. Introduction

1.1. An Enriques surface S is a non-singular surface S over a complex
number field C satisfying one of the following equivalent conditions [1],
(2], (7], [8]:

(1) 2Ks ~ <g. but Ks » <g, and 9(S) = 0.

(2) s =0 and by(S) = 10.

(3) S is minimal with »(S) = 0 and b2(S) = 10.

(4) S is minimal with >(S) = 0 and Py =0,¢=0.

Normal quintic Enriques surfaces are then normal quintic surfaces in
q q
P3 which are birationally isomorphic to Enriques surfaces.

We present a family of normal quintic surfaces in P®, say F, which are
birationally isomorphic to Enriques surfaces. These Enriques surfaces
are characterized by a special type of divisors D. Our main concern is
to show that the space of Enriques surfaces obtained from the family of
normal quintic surfaces F is of dimension 6.

1.2. We now discuss on singularities, especially on minimally elliptic
singularities. First let us give a definition of a geometric genus of a
singular point.
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DEFINITION. The geometric genus h(p) of V at p is the dimension
of the complex vector space H'(M,< m). This number is finite and
independent of the choice of resolution of singularity = : M — V. It
may alternately be defined as the dimension of the stalk at the point p
of the sheaf R'm,(<p) on V, which is concentrated at the point p.

If h(p) = 0, then p is called a rational singularity. A rational singu-
larity embeds in codimension 1 if and only if it is a double point. And
among all surface singularities rational double points are the simplest
ones. They are classified into the following five types with well-known
dual graphs :

An(n>1) 2yt +yti=0
Da(n>4) 224y@®+y" %) =0
Eq 22+:r,3+y4 =0
E; 22+$($2+y3)=0
FEg 22+x3+y5 =

DEFINITION. A cycle D > 0 on X is rational if x\(Ox(D)) = 1,
elliptic if x(Ox (D)) = 0, and minimally elliptic if x(Ox(D)) = 0 and
x(Ox(C)) > 0 for all cycles C such that 0 < C < D. Let Zy be
the fundamental cycle of an isolated singular point p € X, then p is
called rational (weakly elliptic, minimally elliptic) point if Z4 is rational
(elliptic, minimally elliptic).

In [10], H. Laufer shows that a point p is minimally elliptic if and only
if h(p) = 1 and its local ring <y, is Gorenstein. Since a hypexburface
singularity is Gorenstein, a singular point p of a hypersurface in P?is
minimally elliptic if and only if h(p) = 1. Let Z be a fundamental
cycle of a minimally elliptic point p. Then if Z-Z = —1 or —2, then
p is a double point, and if -3 < Z-Z < -1, then the point p is a
hypersurface singularity (Theorem 3.13, [10]). If p is & minimally elliptic
singularity which is not a double point, then p is an absolutely isolated
point, that is, a singularity which can be resolved by blowing up points
alone (Theorem 3.15, [10]). He also gives a list of defining equations
and dual graphs of all minimally elliptic double and triple points. In his
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list, if the exceptional set A is a non-singular elliptic curve, then
(1) if Z-Z = —1, then the equation of pis Ty 36 @ =2 4 23 -{—Vyﬁ = (.
(2) if Z-Z = -2, then the equation of pisTh a4 ¢ 2 at4a?y’+y! =
0.
(3) if Z-Z = -3, then the equation of pis T3 33 @ 2 +y* 4+ 23 = 0.

From one of the fifteen equivalent characterizations by Alan Durfee,
rational double points are also absolutely isolated singular points ([5])-
On the other hand minimally elliptic double points may be characterized
as those points such that they could be resolved by blowing up double
points alone except exactly one step where the blow-up is along a double
curve. This can be checked by resolving the equations of minimally
elliptic double points (provided by H. Laufer. [10]).

According to the classical definition. a pomt p of a surface X is called
“tacnode” if it is a double point and X has an infinitesimal double line L
in the first neighborhood of p (page 426, (11]). Following this definition,
all minimally elliptic double points are tacnodes. In this paper, we will
consider only those tacnodes which are minimally elliptic double points.

DEFINITION. Tacnodes are minimally elliptic double points with Z -
Z = -2,

Throughout this paper, we will say simply tacnodes of type I ignoring
self-intersection numbers of irreducible components of I'. Particularly,
tacnodes of type Iy, which appear generically, are simple elliptic singu-
larities,

2 4 4 2.2 4
Toaa : 7+ 0+ 4t +aa?y?, a #4
whose exceptional sets are non-singular elliptic curves.

Most of tacnodes we will treat in this paper are tacnodes of type
I,,0 <n <9, which are also cusp singularities. In general, the equa-
tions of tacnodes are given as follows

2y fleoy) =0,

where f(x,y) are polynomials of degree 4 or 5. We define a tacnodal
plane to be the plane given by the equation z = 0 in the above equation.



548 Yonggu Kim
2. Normal quintic Enriques surfaces

2.1. We first show Ezio Stagnaro’s claim employing a modern lan-
guage, which states that a family of special normal quintic surfaces in
P3, say F, are birationally isomorphic to Enriques surfaces. Then we
investigate the condition on Enriques surfaces which are birationally iso-
morphic to the above special normal quintic surfaces of F.

However, since our emphasis in this paper is showing that Enriques
surfaces obtained from normal quintic surfaces of F are of moduli number
6, most of proofs in this section will be brief, and the detailed proofs will
appear at the coming paper on normal quintic Enriques surfaces treating
mainly the second family of normal quintic surfaces (cf. [9]).

THEOREM 2.1. (Ezio Stagnaro [12]) Let Fs be a normal quintic sur-
face in P® with the following property, say P :

Fs has four tacnodal points at the vertices Ay, Az, Az, A4 of a tetrahe-
dron T such that there exist two planes a1, az, where ay is the tacnodal
plane to Fs at A;, Ay and a9 the tacnodal plane to F5 at Az, A4.

If S is a minimal non-singular model of Fy, then S is an Enriques
surface.

PROOF. Let S be a minimal desingularization of the surface Fs. Then
we show that p,(S) = 0, ¢(S) = 0 and Py(S) = 1. It is easy to show
that s(S) = 0. Then from the classification of surfaces with » = 0, the
minimal model S of S is an Enriques surface.

To show that P2(S) = 1, we use the following fact which is essential
in understanding the reason why we have to impose « special condition
on two tacnodal planes «; and ap : Let € C V be the exceptional set
of the minimal desingularization o : V — V, where V is an affine
neighborhood of one of two tacnodes. Then the tacnodal plane Hy is the
unique hypersurface section of V whose the total transform, o*(Ho) =
Ho+2¢; and for all other hypersurface sections H containing the tacnode
as a regular point, o*(H) = H +eé.

From this remark, it is easy to see that a3 + a2 is the only effective
divisor of |2Kz|, hence P,(S)=1. O
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COROLLARY 2.2. Let X be a minimal non-singular model of a normal
quintic surface Fs which has four tacnodes in general position and does
not satisfy the property P. Then X is a rational surface.

PROOF. Similarly to the proof of Theorem 2.1, 1t 1s easy to find that
Pe(X) =0, ¢(X) =0 and P>(X) = 0, which implies Ky - Ky < —1.
Hence »#(X) = —oco and X is a rational surface. [J

2.2. We now fix four points of the tetrahedron T, say A1 =(1,0,0,0),
A2 = (0,0,1,0), 45 = (0.1,0, 0).44 = (0,0,0,1), and two tacnodal

planes to Fj,
oy trxptaz=0andag @ 294+ a4 =0

at 43, Ay and A;. 4, respectively.

PROPOSITION 2.3. Fs contains three lines Ly, L} and L, ; the lines
Ly = A4, and LY = A3z4, are lines Joining two vertices of the tetra-
hedron T and Lo is the intersection of two tarnodal planes oy and ao.
Furthermore. the normal quintic surface Fy has the following equation :

Fs (a3 + 232y + 3)2
+(.1;‘? +a3) (g + 24)?
+((11.‘l'1.1.'2.1'3 +arxepwy + azrya3ry + agas ‘1'32'4)(1'1 +a3)(x2 +24)

+a5;1rg;r:’;(.r1 +23) + (1,6.7'f.1r§(;172 +24)=0; a5 #0, as #0.

PRroOOF. The line L, joining 4; and A2 mects Fy with multiplicity 4
at A; and A, because L, belongs to ay, and ay cuts out Fy a divisor
D, which is a hyperplane section of Fy. with multiplicity 4 at A4; and
As. Hence L) has to be in Fs and the line L; has multiplicity 4 in the
divisor Dy, that is, D; = 4L, + (4, (; a line. Similarly, we may say that
L} is in F5 and ay cuts out a divisor Dy with Dy = 4L} + 0}, (| a line.

The line L,, which is the intersection of a; and aq, meets L; and
L} with multiplicity 4 because L; belongs to ay, a9, and a7, «y cuts
out F; hyperplane sections which contain L; and L7 with multiplicity 4.
Hence L, is also in F; and is a component of borh Dy and Dj. Therefore

= [’; = Ly, and Dy =41, + L,, ; = 4LI‘ + L,.
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Now let us find the equation of Fs. First write
Fs (x4 23)S + (22 + 24)T + Rs,

where S and T are polynomials of degree 4, and R5 a polynomial of
degree 5 which does not have any term divisible by (z1+z3) or (z2+24).
We follow the following rule to choose S and T : Let (21 + x3)™(z2 +
z4)" K be a degree 5 term of Fs for some K. Then (z; + x3)™ ! (x2 +
4)"K isin Sif m > n, and (27 + 73)™ (22 + 24)" 'K isin T if m < n.

Let S =5+ (21 +23)S3+ (22 +24)Usand T =1y + (72 + 24)T3 +
(x1 + x3)V3, where polynomials of degree 4 Sy, Ty do not have any term
divisible by (21 + x3) or (22 + 24). Uj is a polynomial of degree 3
which does not have any term divisible by (2, 4+ 23), and similarly V3
1s a polynomial of degree 3 which does not have any term divisible by
(z2 + z4). Let W3 = Uz + V5. Then we get

Fy: (214 x3)Se+(22 + xa)Ty + (01 + 23)°Sa + 29 + 24)° T
(a1 + @3 )22 + 24)W3 + Rs.

F5 satisfies the following conditions :

(1) F5 has multiplicity 2 at points A;, 42, A3 and A,

(2) (F5 =0and (z1+u23) = O), which is (o +24)Ty + (9 +14)° T5 +
Rs = 0, has multiplicity 4 at A3 and A4y. Similarly, (F5 =
0 and (x2+ay4) = ()), whichis (21 423)Sy+ (1, 4—173)253-}-125 = 0,
also has multiplicity 4 at 4; and A,.

(3) The leading terms of F5|,,—; and Fs|,,—; are (zo + z4)%. Simi-
larly, the leading terms of Fs|,,=1 and Fs|,,=; are (xy + 23)%.

From (2), S3 should be divisible by (23 + z4) because S3 is a polyno-
mial of degree 3. Similarly. T3 is divisible by (z; 4+ x31. Then condition
(2) is equivalent to the following :

(2") (Fs =0and (z,+z3) = 0), which is (zg+24)Ty +Rs = 0, has the
multiplicity 4 at 43 and A4. Similarly, (F5 = 0 and (x2 + 24) =
0), which is (21 + 3)Ss + Rs = 0, also has the multiplicity 4 at
Al and A'_.».
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From (1), Ss can not have monomials 23,2} and also can not have
z1, 3 because otherwise Ay and A, do not belong to Fy. Similarly, T
can not have monomials 27, 21, % and xi.

S4 can not have monomials ar?f,wgé’ for a linear form ¢ because of
condition (1). S; also can not have monomials 23, 23¢ for a linear
form ¢ because of condition (3). From (2'), S; can not have monomials
containing z; or r3. Hence S has only one monomial z}z?. Similarly,
T} has only one monomial z%z2.

S3 can not have monomial 22%, 2224 and &Ny monomials containing
x1 or x3 because of condition (3). Hence the only possible monomials
for S; are z3 and z3. Then Sy = x3 + z3 up to constant. Similarly,
T3 = a1 + 23 up to constant.

From (3), the only monomials of W3 are x17023, vy2974, 7123704 and
IyTaly.

Obviously Rs can not have monomials 25, a3, 23, &3, Rs can not have
monomials 17;.'1'2,.7,'11173,...,.’lfjll'g,:l'j.’l‘g because of condition (1). From
condition (3) Rs can not have 3Ty, ¥3rary,. .. iasey, a3z5r,. Hence
from condition (2) Rs must have, if any, monomials of the following
types, Ti1ps,T2q4, 0354, T4ty, where P4, ¢4.54,t4 are polynomials of de-
gree 4. However, if R; has the monomial, for example, xy (23x2). then
(F5 = Oand (z; + 23) = 0) would not have multiplicity 4 at 4,. Hence
Rs must be zero.

Therefore we get the following equation :

Fs o a(ay +ad)(ar + a3)°
+b(a + 2}y + ay)?
+ (c1x1a203 + coxyanry + 3212324 + C4297374) (21 + 23) (T2 + 24)
+esasai(@r + a3) + coririag + vq) =0,

where a #0,b+# 0.¢c5 # Oandeg # 0.
Multiply the above equation by «2b? as follows :
(131)2(1?3 + ) + x3) + (121)3(.1':]5 + a3) (g - 2y )2

9
+ ah? (cl T1T2x3 + C2X X2y + CyrT324 + C;;‘L72;733;l74)

(r1 4+ 23)(22 + 24)
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2,2 2.2 2,2, 22
+ a*b eszyai(@ 4 ws) + a’biesriad (w2 + 24)

:((am2)3 + (ar.4)3)(b:lr] + bas)?
+ ((bx1)? + (b23)*)(aw2 + azy)?
+ab(e12122203 + cox1 2024 + 3212324 + C4ToT374)
(bxy + bas)(axy + axy)

+ a®besxizl(bry + bay) + ab’cszizi(axs + azy) = 0

We apply the torus group action to get the linear equations (z; +
z3),(®2 + 24) from (bax; + br3),(arz + az4) respectively. Then after
adjusting coefficients, we get the desired equation of F5. O

23. Let 0 : S — F; be the minimal desingularization of Fs and
p: S — S the blow-down of § to the minimal mode]l S, which is an
Enriques surface. In this section we classify the Enriques surface S which
1s birationally isomorphic to a normal quintic surface Fs in P® with the
property P of Theorem 2.1. For this purpose, we seek to find the divisor
D on S which corresponds to a hyperplane section of F; by the birational
isomorphism f = oop™! : § — Fs and plan to claim that every Enriques
surface S with the divisor D and an additional property, which will be
stated in Theorem 2.5, is birationally isomorphic to a normal quintic
surface F5 in P* with the property P.

e

3

Figure 1
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We note that the normal quintic surface Fs contains three lines Ly, L},
L. Let 11,1} and I, be the proper transforms of lines Ly, L} and L, by
the map 0 : § — Fs. It is easy to see that /; and I{ are exceptional
curves of the first kind on S. If we blow down exceptional curves of the
first kind ; and !} to smooth points, then l; becomes an exceptional
curve of the first kind. Thus we could blow down a rational curve l, to
a smooth point too. Let S be the surface obtained from S after blowing
down [,,1{ and l;. Then K's - K's = 0 since Ng- Kz = —3. Hence the
surface S is the minimal surface. Let H = o*(H ) be the proper transform
of H, a hyperplane section of Fy by the minimal desingularization map
c:85 — F5, and D the divisor on S which corresponds to H by the
composition map of the above three blowing downs.

After blowing down exceptional curves I}, I} first and then Iy, we see
that the divisor H of § corresponds to a divisor D with the configuration
in Figure 1, where €;, ¢, €5, ¢4 are isolated elliptic curves (or indecom-
posable divisors of canonical type) on S which are the images of é;,é,. ¢4
and €4 by the blowing-down map p: S — S (We note that €, €y, ¢é5. ¢4
are the exceptional sets on § for the minimal desingularization map
o:85 = Fy).

By summarizing what we have observed, we get the following propo-
sition.

PROPOSITION 2.4. If S is the Enriques surface obtained from the
normal quintic surface Fy satisfying the property P of Theorem 2.1,
then S has a divisor D = €] + e + €3 + e4 with the configuration in the
Figure 1.

Conversely we show that a generic Enriques surface S with a divisor
D =¢e; +e3+ €3+ ey with the configuration in Figure 1 is birationally
isomorphic to a normal quintic surface Fy in P? satisfying the property
P.

THEOREM 2.5. Let S be an Enriques surface with a divisor D —
€1+ €2 + e3 + €4 with the configuration in Figure 1, that is, €1.¢9,¢3, €4
are isolated elliptic curves and e; - 5 = ¢, "€y = €9-€3 = e9-€4 = 1, and
€1 €y = €3 €4 = 2 with the following additional geometric property GP

“e1,e2 and e3, es meet tangentially at the same point p € S.”
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Then the following statements are true :

(1) If the adjoints e¢;'.¢3'. e3' and ¢y’ do not have a common point,
then S is birationally isomorphic to a normal quintic surface
Fs in P? satisfying the property P of Theorem 2.1, where four
tacnodes are of tvpe I, (0 < n < 9), which are cusp singularities,
with possibly finitelv many isolated rational double points.

(2) If the adjoints e,', ¢, c3" and ¢4’ have a common point, then S
is biratioually two to one onto a quadric surface Q in P?.

REMARE. Notice that ¢;’.¢2', ¢3' and ¢4’ can not have more than one
- 9
common point. if any, because €;'-e3' = €' 64’ = €2’ ez’ = €' ey =1

REMARK. It is well known that every Enriques surface has a divisor
D = ¢ 4 ¢y 4 ¢y + ¢y satisfving all conditions of Theorem 2.5 without the
geometric property GP. And for such a generic Enriques surface with
the property GP. ¢ e}, ¢ ¢ do not have a connnon pomt.

PROOF. Let D = ¢*(Ng)+2L, + 2L, 4+ Lo+ €1 4+ €24 €3+ €4, a divisor
on S. We then show that the complete linear system |D| determined by
D corresponds to a sublinear system £ of a complete linear system on
S, which induces the projection 7 : § — Fs, a map from the Enriques
surface S to a normal quintic suface Fy in P? with the property P. The
detailed proof is referred to [9].

3. The linear independence of four tacnodes

3.1. Let f : (C*,0) — (C.,0) be a germ and M(f) = Cla,y, z]/Jy,
where J is the jacobian ideal of f, that is, the ideal generated by the
partial derivatives of f : f,. f, and f..

DEFINITION. The number g f) = dim M ( f) is called the Milnor num-
ber of f and M(f) the Miluor algebra of f.

Prorosition 3.1. Let f : C" — C be a weighted homogeneous
polynomial of degree d with respect to the weights w = (wy...., Wy ).

Then
(d —wp). . (d—wy)

Wi ... Wy

p(f) =
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PROOF. For the proof of this proposition, we refer to [5]. O

Lastly we present the criterion for a functior. to have a tacnode of type
Iy. First let o = 22 + 2% 4 ax?y? 4+ y*, o2 # 4. Let X be a hypersurface
in P? given by a polynomial f, where the equation of f in an affine
neighborhood of a fixed point p is

gk
f= Z aijrz’y’at

0<it3+k<n

where the point p corresponds to the origin.

Then we have the following criterion to have a tacnodal singularity of
type Ip, that is, simple elliptic singularity T3 4 4 at the point p.

LEMMA 3.2. The necessary and sufficient condition for X to have a
tacnodal singularity of type Iy at p is that the coefficient of =, apg; = 0
and f = 0, where f € M(y) is the representative of f in the Milnor
algebra of .

PrOOF. Suppose that a polynomial function f given by the above
equation satisfies the conditions, agg; = 0 aad f =0 By analytic
coordinate changes, we can eliminate all terms containing z-variable.
Then f becomes the function ¢ added with terms of degree higher than
five. Hence f has a tacnode of type I at p. U

3.2, Let ¢ = 22 4+ 2% 4 Mz?y? 4yt A2 # 4. Then from Proposition
3.1, u(p) = 9. Actually, it is easy to find generators of M () as follows

2 9 -3 -3 2.9
s Y, TTY,

(3-1) Lz, g,8%, 2y, 5

g}

where the bar over a letter denotes its representative in the Milnor alge-

bra M(yp).

"

NOTATION. For a given polynomial feClay,xe, 03, 24], let “flei=
be the function obtained from f after taking z; = 1, which may be
considered as a polynomial function in the affine neighborhood r; = 1.
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PROPOSITION 3.3. In the space of all quintic surfaces of P32, tacnodal
singularities of type Iy, i.e. simple elliptic singularities T> 4.4 at four
points Py, Py, P;. Py of P3?, which are in general position, give 40 linearly
independent conditions.

PROOF. In this section. all tacnodes are assumed to be tacnodes of
type Iy or simple elliptic singularities

Tyaq: =242+ ar’yt +yt d* £ L

We fix four tacnodal points to be the vertices of the coordinate tetrahe-
dron T, that is, P, = (1,0.0,0), P, = (0,1,0,0),P; = (0,0,1,0), Py =
(0,0,0,1). Let us assume that we have chosen local affine coordinates
2.y, z at each points Py, P». Py and Py. Then there corresponds a func-
tion ; at each point P; which has the same equation as the above ¢ with
the chosen local coordinates. Let Clay, xz, 23,24]|p; be the polynomial
algebra in an affine neighborhood of P; by taking x; = 1. Then there is
a projection mapping

@ :Clry. 2. 23,24

— (Ci.C[:lrl,.z'g. ey, xq)lp fJ. . Clay,ae,as, 1‘4“}24/-]).

where Cxy, 2,3, 24)|p;/J 1s the Milnor algebra of the function ; de-
fined in a neighborhood of P;. The projection @ is defined as follows :
for a given polynomial f € Clu,xy. 13, 74),

where

f’r,:] € C[.I'] A N .’1‘4”[)'. /J

is a representative of f|,,—; in the corresponding Milnor algebra, and
“f|..i7 is the coefficient of = variable of the function f|,,=1 where = is the
degree two variable in the equation of o defined in an affine neighborhood

of P;.
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We have the expression of the polynomial algebra Clz1, z2, 23, 24] as
a summation of graded homogeneous polynomial algebras :

oC

Clay,z2,a3,24] = Y H*(P?, Opa(k))

k=1

Then we get the projection mapping ®5 which is the restriction of the
projection @ to the subspace H°(P?, Ops(5)), the space of homogeneous
polynomials of degree 5 :

®; :H°(P°, Ops(5))

— <C4,C[.T],Ig,:1'3.1'..1”;)1/.], .. ,C[£F1,$2,T3.T4”174/J>

Since Clz1, 22, T3, 24)|p, /] is a vector space of dimension 9 with gen-
erators given in (3-1), the projection ®s is = linear mapping from a
56-dimensional vector space to a 40-dimensional vector space.

To prove Proposition 3.3., it is enough to show that the projection
®; is surjective. Then from Lemma 3.2, a quintic surface Fy with its
defining equation f has tacnodal singularities at Py, Py, Py, P, if and
only if ®5(f) = 0. To show the surjectivity of ®s, we write a general
homogeneous polynomial f of degree 5 as follows :

5 5 5 5
fraiay + azasy + a3y + agxy
4 4 4 4 4, ’y
+asz iz +agriTs + arT Ty + ag179 + agryicy + a10T5T4
+ 4 4 4 4 e oo
a41171T3 + 127275 + A13T3%4 + A14T1T4 + Ai5T2T4 + Q1eT3Ty

3 3 3 34,2 3.2 2
+(l]7.‘l‘1.’1721'3 + A18T1 T2y + A9l rgry + A0 25 -+ az1y&y + (ap X 2y
2
4
2

Uy
3
1

3
I
3 3 3 2,3 3.2 3
+a3T1T53 + A2 T1T53 4 + Upsx5T374 + Q26T1T; + A725T3 + AR T52
3 3 R 2.3 2.3 3
+asgriTory + A30T1T3T4 + Uz 2374 + azpriry + A330503 + U340y

2

3

3 3 3 2.3 2 3
+azsriToTy + Aze 1232 + agrraaay + a3gT )Ty + A3gTo0y + tgpr i
2.2 2. .2 2.2
+aa1T12323 + Qa2x7 205 + asziaiay
2 2 22 2 2
+agqxiT20] + A4s5T{T324 + Qg3

2.2 2 2 2.3
‘agrrirgas + A48Ty 32y + A9 1T52y
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2.2 22 2
+aspr1T3Ty + U5y T3y + (1521'21‘%;1‘4

2 2
+a r;r, ToT3T4 + g4 T )131 4+ U551 722374 + As6X 122237

Now we claim that every 40 coordinates of the image ®5(f) has its
unique coefficient of f, that is, we can find aj; from each j-th coordinate
of ®5(f) so that if j # k. then 7; # i. Then for a given element

€ (C-l,C[J‘],;l'Q, vy agllp /. Clay, 2, ;1‘3‘.174”1)4/J>,

we can find a homogeneous polynomial f € HO(Pg, Op3(5)) so that
®5(f) = v after adjusting chosen free coefficients. Hence the projection
& is surjective. Notice that the mapping @5 depends on the choice of
the local coordinates at each points P, (i = 1,....4). For instance, if we
take the local coordinates as follows :

=gy = 3,7 = xy at P
= at Pz

ty

= ay.y = Oy,
=g,y =a7,7 =2 at Py

r=ua1,y = x9,0 = ag at Py
then

foa=ar foao=ag fog=a1y foa=

((‘11.a5:i', agy. (120.‘1"2,(117.1-;1/,(1,213]2,((1,2.; —2/A (L_12).1,'3,

(azy — 2/ ayy) —A/2 ayy + agg — A, "2 ag)riy?)
flrz:l :((12.(19.?,(110!/.(Ig','.i';, (1.25417y.(128y', (azz -- 2/ a4)3°.

(aszg — 2/X ain)§* (= A/2 ais + a5y — A2 app)a’y°)
flea=1 =(az.arz2,any. (1;;.1j'-‘), Uz Iy, (1;;f_)g", (ag0 — 2/ A ags ).1"}

(a1 —2/N an)y” (=A/2 ays + a4 — A2 ag )2 )3)2)
.f|ln,=1 -—2((14,(114.7',(L,;,g.(138.1;“,&35.17%(1399 Jagg —2/A aso)r”

(aag — 2/ ) ap)y* (A2 ajo +agz — A2 an)7%y?)



Normal quintic Enriques surfaces with rnoduli number 6 559

We choose coefficients «; with bold letters only if a coordinate has
such a coefficient in it. Then we can find 40 independent coefficients a;
from the above equations.

It is easy to see that from the invertible linear transformation which
changes the coordinates of P3, there corresponds an invertible linear
transformation acting on the coefficients of the polynomial f, that is, on
a;’s. Hence, in a neighborhood of the identity in GL(4), the mapping
®; is still surjective. Hence four tacnodal ponts at Py, Py, Py P, give
40 linearly independent conditions on quintic surfaces in P3. [

REMARK. There is a similar but more general result on rational dou-
ble points of hypersurfaces in P3 by Daniel Burns and Jonathan Wall
[3]. It is likely that four tacnodes of type Iy are a maximum number on
quintic surfaces in P? which give linearly independent conditions, and we
do not expect the same result for other types of tacnodes since tacnodes
of type Iy are generic with x4 = 9.

THEOREM 3.4. Let Q be the moduli space of normal quintic surfaces
in P? which satisfy the property P of Theorem 2.1. Then the dimension
of the moduli space Q is 6.

PROOF. First we count normal quintic suriaces Fx in P?® with tac-
nodal singular points at P,, Py, Py, P, and satisfying the property P of
Theorem 2.1, where Py, P, P;. Py are the poinis defined in Proposition

3.3.

Let S5 p be the space of such normal quint:c surfaces Fs, where we
denote P for four points Py, P, P;, Py, Then for a general quintic surface
F to have tacnodal singularities at Py, Py, Py, 7, we need 4 x 10 = 40
conditions from Proposition 3.3. It is not difficult to find out that we
need two 3 more conditions for two tacnodal planes to be identical,
thus total 6 more conditions. Then dim Ss.p =585 —-4x10—-06 =09,
where 55 is the projective dimension of the space of homogeneous quintic
polynomials.

It is clear that any other normal quintic surface in P? with the prop-
erty P at different four points in general position is the linear transform
of a normal quintic surface F; € Ss,p. Thus every normal quintic surface
with the property P at any four points in general position belongs to
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an open subset of S5 p x C'%, where C!® =C* x --- x C* represents the
space of four points in P*. There is a diagonal action on S5 p X Cc'e
by the group T x GL(4) with the torus group T. Hence we have the
birational isomorphism

Qo (Ss.p x C'%) /(T x GL(4))
From this birational isomorphism, dimQ = (9 +16) - (3+16) =6. U

COROLLARY 3.5. Let £ be the moduli space of Enriques surfaces
which are the minimal models of normal quintic surfaces in P* satisfying
the property P of Theorem 2.1. Then dim & is G.
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