ON PRIME DUAL IDEALS IN BCK-ALGEBRAS

EUN HWAN ROH, YOUNG BAE JUN AND YISHENG HUANG

ABSTRACT. In [1], Ahmad has given a characterization of prime dual ideals in bounded commutative BCK-algebras. The aim of this paper is to show that Theorem of [1] holds without the commutativity.

By a BCK-algebra we mean an algebra (X;*,0) of type (2,0) satisfying the following axioms:

```
(a_1) (x * y) * (x * z) \le (z * y),
```

$$(a_2) \ x * (x * y) \le y,$$

 (a_3) $x \leq x$,

 (a_4) $x \le y$ and $y \le x$ implies x = y,

$$(a_5) \ 0 \le x$$

where $x \leq y$ is defined by x * y = 0.

From now on, for any BCK-algebra X, \leq is called a BCK-ordering on X and we know that (X, \leq) is a partially ordered set. For any BCK-algebra X, the set $\{x \in X | x \leq a\}$ is denoted by A(a), where a is a fixed element in X. A BCK-algebra X is said to be with condition (S) if there is a largest element x satisfying $x*a \leq b$ for any two fixed elements $a, b \in X$. The largest element is denoted by $a \circ b$. A nonempty subset A of a BCK-algebra X is called an ideal of X if it satisfies $0 \in A$, and $x*y, y \in A$ imply $x \in A$ for all $x, y \in X$.

A BCK-algebra X is said to be bounded if there exists $1 \in X$ such that $x \le 1$ for all $x \in X$. In a bounded BCK-algebra, we denote 1 * x by Nx. A BCK-algebra X is said to be commutative if it satisfies for all $x, y \in X$, x * (x * y) = y * (y * x). A BCK-algebra X is said to be positive implicative if (x * y) * z = (x * z) * (y * z) for all $x, y, z \in X$.

Received January 3, 1995.

¹⁹⁹¹ AMS Subject Classification: 03G25, 06B99.

Key words and phrases: Upper semilattice, (prime) dual ideal.

Supported (in part) by the Basic Science Research Institute Program, Ministry of Education, 1994, Project No. BSRI-94-1406.

A partially ordered set (L, \leq) is called a lower semilattice if every pair of elements in L has a greatest lower bound (meet); it is called an upper semilattice if every pair of elements in L has a least upper bound (join); the operations join and meet are denoted by \vee and \wedge , respectively. If (L, \leq) is both an upper and a lower semilattice, then it is called a lattice.

DEFINITION 1. A nonempty subset D of a BCK-algebra X is said to be a dual ideal of X if

- (a_6) $a \in D$ and $a \le b$ imply $b \in D$,
- (a₇) $a, b \in D$ imply there exists an element $c \in D$ such that $c \le a$ and $c \le b$.

Clearly, a principal dual ideal D(a) generated by a is $\{x \in X | a \leq x\}$ (see [2]).

DEFINITION 2. A dual ideal D in a BCK-algebra X is called a prime dual ideal if for any $a, b \in X$, $a \lor b \in D$ implies $a \in D$ or $b \in D$ where $a \lor b = lub\{a, b\}$.

For any subsets A, B of an upper semilattice BCK-algebra X, we define

$$A \vee B = \{x \vee y | x \in A, y \in B\},\$$

where $x \vee y = lub\{x, y\}$.

It is well known that if X is a bounded commutative BCK-algebra, then $x \vee y = N(Nx \wedge Ny)$.

B. Ahmad [1] proved the following theorem.

THEOREM 3. Let X be a bounded commutative BCK-algebra. Then the following are equivalent:

- (b_1) D is a prime dual ideal of X,
- (b₂) For any dual ideals D_1, D_2 of $X, D_1 \vee D_2 \subset D$ implies $D_1 \subset D$ or $D_2 \subset D$.

Now we prove that Theorem 3 holds without the commutativity.

THEOREM 4. Let X be an upper semilattice BCK-algebra. Then the conditions (b_1) and (b_2) are equivalent.

PROOF. Suppose that D is a prime dual ideal such that $D_1 \vee D_2 \subset D$ where D_1 and D_2 are dual ideals of X. In order to prove that $D_1 \subset D$ or $D_2 \subset D$, let us assume the contrary that neither $D_1 \subset D$ nor $D_2 \subset D$. Then there exist $a \in D_1, b \in D_2$ such that $a \notin D$ and $b \notin D$. Since $a \vee b \in D_1 \vee D_2$ and $D_1 \vee D_2 \subset D$, we have $a \vee b \in D$. D being prime implies that $a \in D$ or $b \in D$, which is a contradiction.

Conversely, suppose that for any dual ideals D_1, D_2 of $X, D_1 \vee D_2 \subset D$ implies $D_1 \subset D$ or $D_2 \subset D$. We claim that D is a prime dual ideal. Let $a, b \in X$ be such that $a \vee b \in D$. Note that

$$D(a) = \{x \in X | a \le x\} \text{ and } D(b) = \{x \in X | b \le x\}$$

are principal dual ideals generated by a and b, respectively. It is sufficient to show that $D(a) \vee D(b) \subset D$. Let $x \in D(a)$ and $y \in D(b)$. Then we have $a \leq x$ and $b \leq y$ and hence $a, b \leq x \vee y$. Thus $a \vee b \leq x \vee y$. It follows from (a_6) that $x \vee y \in D$. Therefore $D(a) \vee D(b) \subset D$. Then by our assumption $D(a) \subset D$ or $D(b) \subset D$, so that in particular $a \in D$ or $b \in D$ which proves that D is a prime dual ideal. This completes the proof.

REMARK. We note that the results of Theorem 4 is capable of generalization to the case of lattices.

References

- B. Ahmad, A note on prime dual ideals in Tanaka Algebras, Math. Seminar Notes 10 (1982), 239-242.
- E. Y. Deeba, A characterization of complete BCK-algebras, Math. Seminar Notes 7 (1979), 343-349.
- 3. G. Grätzer, Universal Algebra, Von Nostrand, Princeton (1968).
- 4. K. Iséki, On some ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 65-70.
- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- Y. H. Lin, Some results on BCK-algebras, Math. Japon. 37 (1992), 529-534.
- 7. J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, Korea (1994).
- A. B. Thaheem and J. Ahsan, A note on prime ideals in Tanaka Algebras, Math. Seminar Notes 5 (1977), 223-226.

Eun Hwan Roh, Young Bae Jun Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea e-mail: ybjun@nongae.gsnu.ac.kr

Yisheng Huang Department of Mathematics Fujian Longyan Normal College Longyan, Fujian 364000, P. R. China