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THE SCHUR GROUP OF A KRULL DOMAIN

KYyuNG HEE SHIN AND HEISOCOK LEE

ABSTRACT. We consider the Schur groups of some module categories,
which are subcategories of category of divisorial modules over a Krull
domain. Then we obtain the exact sequence connecting class group,
Schur class group and Schur groups of these categories.

I. Introduction

A central separable R-algebra A of a commutative ring R represents
an equivalence class [A] in S(R) C B(R), the Brauer group of R [2], if
there is a finite group G and an R-algebra epimorphism f : RG — A.
This S(R) is called the Schur group of R. If R is a field, a consequence
of the Brauer-Witt theorem (8] says that every element of S(R) is rep-
resented by a cyclotomic R-algebra.

But for a commutative ring R, the classes in B(R) represented by
cyclotomic algebras form a subgroup S'(R) of S(R). Another subgroup
S"(R) of S (R) consists of all algebra classes for which the group ring
RG is separable.

F. DeMeyer and R. Mollin showed that if R is a commutative ring of
positive characteristic then S(R) vanishes [3]. Thus we will assume that
R has characteristic zero in this paper. We further assume that R is a
Krull domain with quotient field ' unless otherwise stated.

In [1] and [2], it was shown that if R is a noetherian integrally closed
domain and [4] is in B(R), then [A4] is in the kernel of B(R) — B(L) if
and only if 4 is isomorphic to Endgr(M) for a reflexive R-module M of
finite type. It was also proved that there exist an exact sequence hetween
the class group and the Brauer group of R. In 1981, M. Orzech [7]
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generalized these facts not only for noetherian integrally closed domains
but for module categories over Krull domains.

We first review the divisorial R-lattices (i.e reflexive R-module over a
Krull domain R) and its basic properties [5,7].

We then discuss the kernel of the homomorphism S(R) — S(I)
which is induced by B(R) — B(K). The Schur group for a reflexive
R-module category of Krull domain R is defined. We also show that it 1s
possible to obtain the following exact sequence of class groups and Schur
groups for R-module categories S C M satisfying certain axioms;

0 — CU(S) — CUM) — SCUS.M) — S(S) — S(M).

Next, we are concerned with the functoriality for the reflexive R-
module categories over a Iirull domain.

We will show that if R[z] is the polynomial ring of a Krull domain R
then the quotient group SC¢(R[z])/SC{(R) coincides with the kernel of
S(R[z]) — S(R).

II. Reflexive modules over Krull domains

Let R be a Krull domain with quotient field K. For the definition
and basic properties of Krull domains we refer {5].

An R-module M is said to be divisorial if it is torsion-free and in
K ®pr M if there is the equality

M = ()M,
pEZ

For an R-module M, rank(M) is defined to be dimp (K @r M). An
R-module M is said to be a R-lattice if M is torsion-free of finite rank
and there exists a free R-module F of finite type with M C F C KGrM.
It follows that rank(M) = rank(F) and that dF C M for a suitable
nonzero element d in L. An R-module M is a divisorial R-lattice if
and only if the canonical homomorphism M — M** is an isomorphism,
where the M** is the double dual of M | i.e. M is a reflexive R-module.

Let M and N be torsion-free R-modules and M /N denote the image
of M@rN in (K &prM)Sr(LKN ©r N). Following Yuan [9], we introduce
the notion of a modified tensor product.
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Now set
MR N = [)(MN),.
pEZ

Then there is a natural map from M ®g N to M @’ N.

PROPOSITION 2.1. [7] Let M be a flat R-module. Then M is diviso-
rial. Moreover for any divisorial R-lattice N, the natural map
M ®r N — M Q3 N is an isomorphism.

THEOREM 2.2. [7] Let A be an R-algebra and let M and N be divi-
sorial R-lattices which are also A-modules. Then
(a) Homa(M,N) is a divisorial R-lattice.

(b) There is a natural isomorphism
Endp(M) ®p Endp(N) — Endp(M @'%% N).

We will use the fact that if M is a reflexive R-module then Endg(M)
1s a central R-algebra. We have a natural map

@ ; Endp(M)® — Endg(M*),

sending f° to f*. The map » is an isomorphism when localized at
each pin Z, so ¢ is an isomorphism . Let A = End r(M). Then

A@pr A° ~ Endp(M ®R M*).

But M @ M* and Endg(M) are isomorphic by the map send-
ing 2 ®g f to f(z) in Endr(M). Thus we obtain the isomorphism
AR A° ~ Endg(A).

We record some basic facts about @'r, some of which were noted by
Yuan for modules of finite type over noetherian domain R.

THEOREM 2.3. (7, 9] Let L, M, N and M; be divisorial R-modules.
Then
(a) M ®% N is divisorial.
(b) If M and N are R-lattices, so is M @'y N.
() (LORM)@RN = L@%(M®%N)
(d) L®%(®Mi) = &(L Ok M)
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(e) M@{y N = N M

ITII. The Schur group for module categories

Let R be a Krull domain with quotient field i and let D(R) be the
category of divisorial R-lattices. We shall consider a subcategory M(R)
of D(R) of divisorial R-lattices satisfying the following axioms ;

(Al) Re M(R) C D(R)
(A2) If M and N are in M(R), M &, N is in M(R).
(A3) If M and N are in M(R), Hompg(M,N) is in M(R).

(Ad) If M in M(R),N in D(R) and M O'R N is in M(R), then N is
in M(R).

Such a category was considered by M. Orzech [7].

For a category M(R) satisfying these axioms, he define the group
B(AI{R)) which is analogous to the Brauer group of R in the following
way.

For any R-algebra 4 which is a divisorial R-lattice, there is a natural

map
n4:A @'R A° — Endg(A)

which is induced by the usual map from A ©®g A° to Endg(A4).

Let A.(M(R)) be the set of isomorphism classes of central R-algebras
which are in A R) as R-modules and for which the natural maps n4 are
isomorphisms. Define an equivalence relation ~ on A.(M(R)) by A ~ B
if 4 @fR Endgp(M)~ B CE’I‘»/R Endgr(N) for some M, N in M(R).

Define B(M(R)) to be the set of equivalence clesses of A:(M(R))
relative to ~. Let [A] be the equivalence class of A in B(M(R)). Then
B(M(R)) is an abelian group under the multiplication
[4)[B] = [4 & B] which is well defined by Theorem 2.2 and (A2).
Obviously it is commutative, associative by Theorem 2.3, and possesses
an identity [R]. The inverse of [4] is [4°]. We call B(M(R)) the Brauer
group of the category AL ().
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REMARK 1. Three particular cases of this construction are
(1) M(R) = D(R) =divisorial R-lattices
(2) M(R) = P(R) =projective R-modules of finite type
(3) M(R) = F(R) =free R-modules of finite type
In the case(1), B(D(R)) is B(R), the modified Brauer group consid-
ered by Yuan [9] and by B. Auslander in [1]. The group B(P(R)) of
case (2) is the usual Brauer group. The group B(F(R)) of case (3)is a
subgroup of Hoobler’s Brauer group, which was considered by Hoobler,
Grothendieck and Garfinkel.

Since B(D(R)) — B(R) is one-to-one, the ker(B(R) — B(L')) is the
same as ker(B(P(R)) — B(D(R))).

To define a subgroup S(M(R)) of B(M(R)) which is analogous to the
Schur group S(R) of R, we assume that M(R) is a category satisfying
axioms (A1)-(A4). First, we need the following lemma.

LEMMA 3.1. Let A and B be central R-algebras which are in M(R) as
R-modules. If there are finite groups G, H and R-algebra epimorphisms
f:RG — A, g: RH — B, then the correspondence (r.y) — f(x) CZ’J'R
9(y) induces an R-algebra epimorphism R(G » H) — A @y B.

PROOF. We know that there exist an epimorphism from R(G x H)
to A®r B defined by (z,y) — f(x) @r g(y).

For each height one prime p € Z, we have an epimorphism

We also have isomorphisms

(A®R B), ~ 4, ©r B, ~ 4, <g>)’R B, ~ (4 ®IR B), - (2)

for all height one prime p € Z, by Proposition 2.1.

Since the free R-module R(G x H) is divisorial R-lattice and A@yBis
divisorial R-lattice by Theorem 2.3, the correspondence (z,y) — f(x )C-;»’R
9(y) induces an R-algebra epimorphism R(G x H) — A C;D'R B by (1) and

(2).
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Let S(AL(R)) be the set of central R-algebra classes in B(A(R))
which are epimorphic images of the finite group rings over R. Then, it
is seen to see the following theorem holds;

THEOREM 3.2.  S(AL(R)) is a subgroup of B(M(R)).

We call S(M(R)) the Schur group of the category M(R) over Krull
domain R.

REMARK 2. If M(R) is the category of projective R-modules of finite
type, S(M(R)) is the usual Schur group of R.

For a Krull domain R, let M (R) be a category of R-modules sat-
isfying axioms (A1)-(A4). Let we recall the following from [2] and [4]
. CI(M(R)) to be the set of isomorphism classes {I} of R-modules I of
rank 1 which are in M(R). It is easy to see that CI(A(R)) is closed
under the operation ®IR Furthermore, CI{M(R)) is & group under this
operation, the inverse of {I} being given by {I*}. This can be easily
seen by noting that T ®‘R I* — Endg(I) is an isomorphism, and that
EndR(I) ~R

To define a group BCI(S(R),M(R)) for categories S(R) and M(R)
satisfying axioms (A1)-(A4) and S(R) C M(R), consider the set of iso-
morphism classes C' of objects M in M(R) for which Endr(M) is in
S(R). Define a relation ~ on C by M ~ N if M @y P~ N @y Q for
some P and Q in S(R). Then the relation ~ is clearly an equivalence
relation and BCI(S(R ,]\I(R)) = (' / ~ is an abelian group with mul-
tiplication induced by . The inverse of the class [M] of M is [M*],
since M @IR M* ~ Endp(M).

In [7], M.Orzech showed that there is an exact sequence

M(R)) — BCUS(R), M(R))

M(R))

1 — CUS(R)) — Cl{]

where S(R) and M(R) are reflexive R-module categories satisfying ax-
ioms (Al)-(A4).

We are going to relate the class group and the Schur group with
BCIU(S(R),M(R)). For this, we consider subset SCI(S(R),M(R)) of
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BCI(S(R), M(R)) consisting of algebra classes [M]in BCI(S(R),M(R))
such that there exists a finite group G and an epimorphism RG —
Endgp(M). Then SCUS(R), M(R)) is a subgroup of BCI(S(R),M(R)).
We can show that there exist an exact sequence between these groups
as following.

THEOREM 3.3. Let R be a Krull domain. Assume S(R) and M(R)
are two categories of divisorial R-lattices satisfying axioms (Al)-(A4)
and S(R) C M(R), then there is an exact sequence

1— CI(S(R)) 5 CUM(R)) - SCI(S(R), M(R)) > S(S(R))
2, S(M(R))

where i{A} = {4}, j{M} = [M],a[M] = [Endg(M)), 3[4] = [4]

PROOF. The maps are well-defined as in [7]. This is clear for ¢ and
B. For j, if {M} € CI(M(R)), Endp(M) ~ M ®p M* ~ R. Thus
J(CM(R))) C SCIS(R),M(R)). To verify it for «, let [A] be in
SCUS(R),M(R)). By definition of our SCIUS(R),M(R)), Endr(M) €
S(R) and [Endp(M)] is in S(S(R)). If [M] = [N]in SCI(S(R),M(R)),
the definition of the relation ~ in C implies that a[M] = o[N]. And for
[M] contained in CI(M(R)), since M is a reflexive R-module of rank 1
and M ®IR M* ~ R. Thus aj = 1. The exactness of the sequence at the
other places is shown by M. Orzech [7].

REMARK 3. Let SCI(R) be SCIP(R),D(R)). Then by Remark 1.
ker(S(R) — S(K)) = SCIR). If S(R) — S(K)is 1-1, S"(R) is a
subgroup of S’(R) as in proposition 2[3]. However the proof of the
proposition is not valid for noetherian domain such that B (R) — B(L)

1s not 1-1. For R = (rﬂ;‘ﬁ%, (_]}'2_1) s non-trivial element in

ker(B(R) — B(K)), and (=571) € SCI(R).
It would be interesting to know whether SC/(R) = BCI(R). 1t is not
clear whether 2 torsion subgroups of S CIl(R) and BCI(R) coincide.
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IV. Functoriality

Let R and T be Krull domains with R € T. The inclusion of Rin T is
said to be a Krull morphism if for every height one prime ¢ of T, ¢ R
has height at most one; this condition is called (NBU), which means “
no blowing up”.

This condition is useful because when it holds there 1s an induced map
from the class group of R to that of T. Let P be a height one prime of
T and p = PN R be a prime ideal of R. Since Tp is an R,-algebra and
R, is a discrete valuation ring provided condition (NBU) is satisfied, we
see that Tp is a faithfully flat Ry-module. The converse holds as well.
That is, if Tp is faithfully flat R,-module, then dim R, < dim Tp and
so height p <1 [5].

There are several general cases in which there is no blowing up (NBU)
for divisorial ideals.

Examples

In any of the cases below, the R-algebra T satisfies condition (NBU).
(1) The R-algebra T is flat as an R-module.

(2) The R-algebra T is integral over R.

(3) The R-algebra T is a subintersection, namely I" = ﬂyRP where
: A

Y is a subset of Z.

TueorREM 4.1. [7] Let R C T be an inclusion of Krull domains.
Then R «— T is a Krull morphism if and only if T is divisorial as an
R-module.

Let M(R) be a subcategory of D(R) satisfying (A1) - (A3) of section
I11. and let the inclusion ¢ : R < T be a Krull morphism, namely T
is divisorial as an R-module. Then the correspondence M +— T &g Al
induces a funtor ¢* ; M(R) — M(T).

In [7]. M. Orzech showed that there is a group homomorphism from
B(AM(R)) (CU(M(R)) and BC{(S(R).A(R)), resp. ) to B{M(T))
(CC(AM(T)) and BCU(S(T), M(T)), vesp. ) with the following commuta-
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tive diagram
(4.1)
1- CYUS(R))—-CLUM(R))—BCl(S(R), M(R))—=B(S(R))— B(M(R))

l ! ! ! 1
1= CHS(T))—ClM(T))—BCUS(T), M(T) —B(S(T))—B(M(T)).

Also we define a group homomorphism from S(M(R)) (resp.SC(S(R),
M(R))) to S(M(T)) (resp. SC(S(T),M(T))) and have a commutative

diagram between these groups over divisorial R-module categories.

LEMMA 4.2. If M(R) is a subcategory of D(R) satisfying axioms
(A1)-(A3) and i : R — T is a divisorial morphisn of Krull domains R
and T with R C T, then the correspondence [A] — [T &Y, A] induces a
group homormophism S(i) : S(M(R)) — S(M(T)).

And for another divisorial morphism j : T «» U of Krull domains, we
have

S(g) = S()S@).

If axiom A(4) holds as well, then there is a group homomorphism
SCL(v) : SCU(S(R),M(R)) — SCES(T), M(T))
which sends [M] to [T &, M].

PRrOOF. For [A]in S(M(R)), there is a finite group G and an epimor-
phism RG — A. And this induces an epimorphism TG — A4 ¢.g T.
Hence TpG — (A @r T)p is onto for all height one prime ideals P in
T.

(A@rT)p ~ Ap ©r, Tp >~ (A©rT)p.

Since (A ®r T)p ~ (A @ T)p, the induced snap TG — A &, T is
an epimorphism. Also the property B(ji) = B(j)B(i) imphes S(j1) =
S(7)5(2).

Thus we have the following theorem.
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THEOREM 4.3. Let S(R) and M(R) be subcategories of D(R) sat-
isfying axioms (Al) - (A4) and S(R) C M(R). Let ¢ : R — T be
a divisorial morphism of Krull domains. Then there is a commutative
diagram with exact rows ;

(4.2)
1= CUS(R))=CUM(R))—=SCS(R), M(R))—S(S(R))—S(M(R))

ln 12 13 1y Lis

1= CUS(T))—CUM(T))—SCUS(T), M(T))— S(S(T))—-S(M(T))
where i;{M} = {T @3 M}, j =1,2 and ix[M] = [T &% M), k = 3.4.5.

V. The Schur group of polynomial rings over a Krull domain

Let R be a Krull domain with quotient field I¥ which is perfect and
R[z] be the ring of polynomials over R. Since R[z] is flat as an R-
module, we have the following commutative diagrams with exact rows.
We assume that R-module categories S(R) and M (F) satisfy the same
conditions as in the previous sections.

From the diagrams of (4.1) and (4.2) in section IV. we have

(5.1)
1 — CUS(R)) —CUA(R)) — BCUS(R),M(R)) — B(S(R)) — B(AM(R))

! i ; |

1= CE(S(R[z]))—CALR[2])— BCH(S(R[z]), M(R[z]))— B(S(R[z]))— B(AM(R[z]))

2
— CUS(R)) —CHM(R))— SCUS(R),M(R)) — S(SiR)) — S(M(R))

(

— o

! i | !
1— CU(S(R[z]))—C{AMR[z])—SCE(S(R[z]), M( R[x]))— S(S(#]z]))—S(M(R[z]))

Let S(R) be the category of projective R-modules and AM(R) be the
category of divisorial R-lattices. As before B(D(R)) -— B(X) is one to
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one, ker(B(R) — B(K)) is the same as ker(B(R) —» I'(D(R))). We
also note that B(K') ~ B(K|[z]) since K is perfect and that B(K[z]) —
B(K(z)) is an inclusion, since K'[z] is regular. Hence from (5.1) and
(5.2), we have the following diagrams.

(5.1°)
1 1 1 1 1
1 l | | l

Pic(R) — CUR) — BCI(R) —  B(R) — B(K)
1 l | | |

Pic(R[z])—ClR[z]) —  BC{R[z]) — B(Rl])) — B(K[z))

l 1 | | {
1 1 BC(R[z])/ BC4(R)— B(R[z])/ B(R) 1
l |
1 1
1 1 1 1 1
1 | l l |
Pic(R) — Cl(R) — SCe(R) —  S(R)  — S(K)
| | | 1 i

(5.2°)  Pic(R[z])—CUR[z]) — SCUR[z]) — S(R[z]) — S(K[z))

1 | l | 1
1 1 SCl(R[z))/ SCL(R)— S(R[z])/ S(R) 1
| i

1 1
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The first two vertical sequences are exact and the last three vertical

sequences are split exact induced from the canonical maps

R — R[z] — R.

Hence we have the following theorem.

THEOREM 5.1. Let R be a Krull domain with quotient field . Then
(1) BC((R[z])/BC((R) ~ ker(B(R[z]) — B(R)) [4]

(2) SCO(R[+])/SCUR) ~ ker(S(R[z]) — S(R))

In particular, if R is a regular domain, so is R[z] and

BC((R[z]) = BC((R) = 0. Hence B(R[z]) ~ B(R) and S(R[x]) ~ S(R).

We consider some examples.

Examples

(1) For the ring of integers Z, since B(Z) = 0, B(Z[xy,....2y]) = 0
and S(Z[r4,....,2,]) = 0 with indeterninates ay,.. ,x,.

(2)  Also we know that B(R) = B(Z(1/2)) = S(Z(1/2)) =~ Z/2Z. For
the nontrivial class in S{Z(1/2)) has a representative which is a ho-
momorphic image of the group riug of the quaternion group of order
8. And thus B(Z(1/2)[wy1,....ay])) = S(Z(1/2)[x1, ..,an]) = Z/22.
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