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ON COHOMOLOGY GROUPS
OF F,[t}-MODULE SCHEMES

SUNG S1K Woo

ABSTRACT. By using an exact sequence of extension groups correspond-
ing to an isogeny of a Drinfeld module we investigate which extension
classes are coming from Hom(G,C). In the last section of this paper an

example was given where the connecting homomorphism can be explictly
computed.

§1. Introduction

In [W2] it was shown that a certain subgroup of extension group of a
rank 2 Drinfeld module by the Carlitz module is a good candidate for a
dual of a rank 2 Drinfeld module which is also a good analogy of the dual
abelian variety. In case of rank bigger than two, the situation appears to
be much more complicated. In case of rank 2, the idea of choosing the
subgroup was finding the smallest subgroup containing all the image of
the connecting homomorphisms

04 Hom(G,C) — Ezt(E,C)

for all isogeny ¢, where G is the kernel of ¢. In this paper we mvestigate
the map 84 and compute some explict examples.
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§2. F,[t}-module schemes

Throughout this paper we fix the following notations: p is a fixed
prime, A is the polynomial ring Fp[t], K is a perfect field containing A and
T is the image of t in IX. As usual G, r denotes the additive group scheme
over K. It is well known that the ring of endomorphisms Endn(G,) is a
noncommutative polynomial ring K’[r] with a commutation relation,

rr=2Pr forzée K.

An elliptic module or a Drinfield module E of rank r is the Fp[t]-
module scheme G, with an A-action

¥v: A — Endr(G,) = K|[r]
such that

(i) degree of ¥, 1n 7 1s the same as deg(a)r,
(i1) the constant term of ¥, is the same as the image of a in K.

If (E,,%) and (E3, 1) are elliptic modules then an isogeny from E;
to F, is defined to be an endomorphism u of G, such that voy = 0.

Anderson [A] gave a definition of higher dimensional analogue of Drin-
feld modules: An abelian t-module over I is an A-mocule valued functor
E such that

(1) as a group valued functor, E is isomophic to G} for some n,
(i) (t— T)NLie(E) = 0 for some positive integer N,
(iii) there is a finite dimensional subspace V of the group Hom(E,G,)
of the morphisms of K-algebraic groups such that
X
Hom(E,G,) = Z Vot

=0

A morphism between t-modules is simply a natural transformation of
the functors.

Let K[t, 7] be the noncommutative ring generated by t and 7 over K
with the relations; tr = 7¢, 2t = ta, 7o = zP7 for » € K. A t-motive
M is a left [t, 7]-module with the following properties,

(1) M is free of finite rank over K[t],
(i1) (t = T)YN(M /M) = 0 for some positive integer N,
(11i1) M is finitely generated over I'[r]-linear map.
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A morphism between t-motives is simply a K|[t, r]-linear map. For a
t-module E let M(E) be the set of all morphisms E — G, of K-algebraic
groups equipped with K[t, r]-module structure,

(zm)(e) = z(m(e)),
T(m)(e) = m(e)?,

tm(e) = m(t(c)),
for e € E. Anderson [A] proved:

THEOREM 1. The functor sending E to M(E) is an anti-equivalence
of categories between t-modules and t-motives.

In particular, we have a canonical isomorphism
E-rtt——module(Ev C) - El‘tl\'[t,r](]\’f(c)a A/I(E))

In [W1] we had,

THEOREM 2. Let E be a Drinfeld module of of rank r. Then the group
Ext(E,C) is isomorphic to K" as additive groups and is represented by
K|[r]/B where B = {ayf — vCala € K[r]}.

Another result we want to recall from [W1] s:

THEOREM 3. Let E be a Drinfeld module of rank r. Let ¢ be an
isogeny of E and let G = Ker(¢). Then we have an exact sequence,

0 — Hom(G,C) -4 Ext(E,C) % Ext(E,C),
For f € Hom(G,C), 8, is given by the formuls
For — vl f =64(f)¢
where f is a lift of f in K|[r].

§3. The connecting homomorphism §,.

First we start by proving t-linearity of 0.
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PROPOSOTION. The connecting homomorphism é4 is t-linear.

PROOF. The result follows from the general theory of homological
algebra: However, we provide a proof because it will give some insight
into the nature of the connecting homomorphism. In [W1] we had the
formula,

bol o = foF =7 (f),
Hence we have
bt F1o = (t- FWE —9E(t- f),
where t - f denotes the t-action on f. Now the right hand side becomes
(fod =i ied = 0a(fIoud = (8(Np5 0 = (1 80l )0,
which proves t-linearity of é,.

Let ¢ be an isogeny of a Drinfeld module E and 6, be the corre-
sponding connecting homomorphism. (Compare the following with [S]

Ch.VIL)

THEOREM 1. Identify the group Ext(E,C) with {[r]/B as before. Let
fe Ext(E,C) and let

0—>C'—>E,'fﬂ—!>E——>O

be the corresponding extension. Then £; belongs to the image of 64
for some isogeny ¢ if and only if ny¢ lifts the isogeny ¢, Ie., there is
¢: F — &5 such that m 0o & = ¢.

PRrOOF. First suppose £ belongs to Im(dy). Then ¢*&; is a triv-
ial extension. Hence there is a section s: E — ¢*&; which makes the
diagram

0 » O y $TES —— E —— 0

I 1

0 C . & —— E —— 0
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commutative. Now define ® by & = 3o s.

Conversely assume that ny: £ — E lifts an isogeny ¢ of E to ®: E —
&s. By using Theorem 1 of §2, we compute in the category of t-motives:
Since we already know that £ = G2 we can write

B(a,y) = B((2,0) + (0.y)) = (z) + B(0, )

where ®&: M(&7) — M(E). Set ¢(y) = ®(0,y) Using the description of
t-action on &5 in [W1], we have

t-(0,y) = (yf.ype).

We compute

te-e(y) = O(yf,yl) = ®((yf,0) + (0,yvF))
= oy, f) + eyl
=yfe+eltc - y)

Hence

Therefore é4(c) = f as desired.

Given an extension & corresponding to f € Ext(E,C) = K[r]/B we
know that & is isomorphic to G2 as group schemes. Hence there is a
natural section s: F — &

O—»C—»tff—i—E—ﬁ(!

s

sending r to (x,0). If £ is in the image of §4 for some ¢ then the section
s is not far from being a t-morphism:

THEOREM 2. Using the notations above if €5 is in the image of é,
for some isogeny ¢ then we have

ts(z) — st(x) = (0. fE(a) — € f(a))

where f is a lift of f in K[r] and ¢(a) = .
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PROOF. Let G = Ker(¢). We know that & is isomorphic to E x
C/Djy where Dy = {(—d', f(a"))|a’ € G}. We identify £; with E x C by
the map

B:ExC/Dy - ExC

which is defined by 3(a,b) = (¢(a),b+ f(a)). Welet t act on E x C/Dy
and send it to E x C by 3:

tes(a) = (¥ (2), fui' (a) = 97 f(a)
where ¢(x) = x. On the other hand, we have
s(t-x) = (v (2),0),

as desired.

§4 An example

Before we take our example we prove an easy fact first:

PROPOSITION 1. Let f € K[7] and let ¢ be an isogeny of a Drinfeld
module E, and let G = Ner(¢). Then f|G is a t-morphism If and only
if there is 8( ) such that fyF —wCf = 8(f)e.

PROOF. If f|G is a t-morphism then fyF —C f -= 0 on G. Hence it
factors through ¢. Conversely if the above equation is satisfied then by
restricting both sides to G we see that the right hand side becomes zero.
Hence f|G is a t-morphism.

For our example we take ¥F = 7% + T and ¥ = 7+ T. Let
a=xr,t" + 47711—11‘"—1 +-t a0 € Fp[t] (Tn # D)

and choose ¢ = zbf . In this case we have a nice description for the
connecting homomorphisn:

PROPOSITION 2. For f € K[r]/K[r|¢F we have

N In—1 In-—-2 =1 2
é;b(aBn—lT + A3 2T +.. )=, (a3n—lT + a3n—2T)-
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PROOF. In the formula fyF — Yl f = 8(f)¢o, we know that &( f) is of
the form a7? + 87 with degree of f is 3n-1. Writing out we get,

(@317 4 agp_or 2 4 W +T)
- (7' + T)(“Sn—lTsn_] + a:c,n-—z”’an“2 +...)
=(ar? + Br)(x 7" + ...

To complete the proof compare the coefficients of degree 73"+2 and
3n+41
T .
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