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CHARACTERIZATIONS OF DISCRETE
CLASSICAL ORTHOGONAL POLYNOMIALS

K. H. KwonN!, J. K. LEg?, aAND B. H. Yoo?

ABSTRACT. We give a simple unified proof of various characterizations
of discrete classical orthogonal polynomials including two new ones.

1. Introduction

Classical orthogonal polynomials of Jacobi, Laguerre, Hermite, and
Bessel have many properties common to all of them. For example, we
have :

(a) (Bochner [3]) they all satisfy a second order differential equation of
the form

(1.1) a(@)y"(2) + Aa)y'(z) = Any(z),

where a(z) = az? + bz + ¢ # 0 and B(z) = dzr + e are polynomials
independent of n and A, = an(n — 1) +dn,n > 0;

(b) (Hahn [6]) their derivatives also form orthogonal polynomials ;

(c) (Hildebrandt [7]}) they are all orthogonal relative to a quasi-definite
moment functional u satisfying a functional differential equation

(1.2) (a(z)) — B(z)u=0

for some polynomials a(2) = az? + bz + ¢ # 0 and B(z) = dz + € ;
(d) (Al-Salam and Chihara [2]) they all satisfy a difference-differential
equation of the form

(1.3) a(2)Ph(z) = (rp7 + $2)Pu() + ta Pa_1(2)
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for some polynomial a(z) = ax? 4+ bz + ¢ # 0 and constants r,,, sn,

and t,.

Conversely, any one of the above four properties characterizes the clas-
sical orthogonal polynomials. We refer to Al-Salam [1] for the history
and the list of contributors of these characterizations of classical orthog-
onal polynomials. A simple unified proof of the above characterizations
as well as some others can be found in [8§].

Replacing the differential operator D = d/dz in (1.1) by the difference
operator A defined by

(1.4) Af(z) = fle+1) - f(x),

we obtain the following second-order difference equation
(1.5) a(z)A%y(z — 1) + B(z)Ay(z = 1) = Auy(a).

Lancaster [9] ( see also {10] and [11] ) showed that there are essentially
only four distinct orthogonal polynomials that arise as eigenfunctions
of the difference equation (1.5). They are discrete classical orthogonal
polynomials of Charlier, Meixner, IKrawtchouk, and Hahn.

It is well known that these discrete classical orthogonal polynomials
can also be characterized by the properties analogous to those listed in
the beginning for classical orthogonal polynomials.

In this work, we shall give simple unified proofs of these character-
izations and two new characterizations of discrete classical orthogonal
polynomials.

2. Main Theorems

In this work, all polynomials are assumed to be real polynomials in
the real variable x. We denote the degree of a polynomial ¢(2) by deg(¢)
with the convention that deg(0) = —1. By a polynomial system (PS), we
mean a sequence of polynomials {P,(2)}32, with deg(P,) = n, n > 0.
We let P be the space of all polynomials and call any linear functional
on P a moment functional. For a moment functional u, we denote its
action on a polynomial ¢(z) by

(u, @)
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and call
{un == (u, 2™},

the moments of u.

DEFINITION. A PS {P,(2)}32, is called a weak Tchebychev poly-
nomial system (WTPS) (respectively, a Tchebychev polynomial system
(TPS)) if there is a non-zero moment functional « such that

(21) <U, PmPn) = I\"iz.&m'n (77'l and n > 0 ),

where K, are real (respectively, non-zero real) constants and &, is
the Kronecker delta function. If I, > 0 for n > 0, we usually refer
{Pn(z)}3%, as an orthogonal polynomial systera (OPS). In either case,
we say that {P,(z)}32, is a WTPS (respectively, a TPS) relative to u
and call u an orthogonalizing moment functional of {P,.(z)}3%,.

A moment functional « is called to be quasi-definite (respectively,
positive-definite) if its moments {u,, }32, satisfy the Hamburger condi-
tion

(2.2) An(u) := det[ui; ] 29 # 0 (respectively, An(u) > 0)

for n > 0. It is well known (see chapter 1 in [5]) that a moment functional
u is quasi-definite (respectively, positive-definite) if and only if there is
a TPS (respectively, an OPS) relative to w.

We let V be the backward difference operator defined by

(2.3) V() = f(x) - f(z —1).

For a moment functional u and a polynomial ¥(z), we let Au, Vu, and
$u be the moment functionals defined by

(2.4) (Au, @) = —(u, V),
(2.5) (Vu, ¢) = —(u,Ad);
(2.6) (Yu,¢) = (u,¥¢),

for any polynomial ¢(z).
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LEMMA 2.1. For any moment functional u and any polynomial ¥(z),
we have
(1) Au=0(or Vu=0) ifand only ifu =0 ;
(ii) if u is quasi-definite, then v (z)u = 0 if and only if Y(z) =0 ;
(iii) A(a)u) = (o + 1A + (Ab(2)u ;
(iv) V(¥(z)u) = (z — 1)Vu + (Vi(z))u.

ProoF. (i) If Au =0, then (Au,2") = —(u,Vz™) =0, n > 0. Hence
u = 0 since {Vz"}52, is a PS. The converse is trivial and the same proof
works for Vu.

(i1) Assume that u is quasi-definite and let {P.(z)}5%, be a TPS
relative to u. Assume that ¥(z)u = 0 but ¥(zr) # 0. Then, we may

k
write ¥ (z) as ¥(2) = 3 ¢;jPj(2) where k = deg(¢)) > 0 and ¢, are
3=0
constants with ¢ # 0. Then
k
0 = (¥(z)u, Pr(x)) = ZCj(u,Pij) = cip(u, P7)
J=0

so that ¢y = 0, which is a contradiction. Hence, ¥/(z} = 0. The converse
is trivial.
(iii) Let ¢(z) be a polynomial. Then we have
(B((z)u), ¢(2)) = — (u, ¥ (2)V(x))
= (u, —p(x + 1)¢(w) + w(r)cb(x - 1)
+ ¢(x 4+ 1)¢ )— $())
=(u, =V[p(x + 1)é(x ]+ Ay(z))d(x))
=(¥(z + 1)Au + (Afﬁ(l‘))u, ¢(z))-
(iv) Let ¢(z) be a polynomial. Then we have
(V(¥(2)u), ¢(2)) =(u, —p(z)(A¢(2)))
(u, ~p(2)d(x + 1) + (z - 1)¢(x)
+¥()é(x) — Yz — 1)¢(a))
(u, —A(P(x — 1)g(x)) + (Vio(z))p(2))
((x = )V + (V(0))u, (). O

fl

I



Characterizations of discrete classical orthogonal polynomials 475

LEMMA 2.2. Let {Pn(z)}%, be a TPS relative to u. Then for any
moment functmna] v and any integer k > 0, (v, Py(z)) =0 forn > k if
and only if there is a polynomial ¢(x) of degree < k such that v = ¢(z)u.

PROOF. Assume (v, P,(z)) = 0 for n > k and consider a moment

k
functional & = (Y ¢; Pj(z))u, where ¢; are constants to be determined
J=1
later. Then
, n>k

0
{C11<U,P3) , 0<n<k.

M»

(0, Pp(z)) = cj{u, PjPy) =
i=1

Hence (9, Pa(z)) = (v, Pp(z)), n > 0, that is, v = ¢ if and only if

¢j = (v, P;)/(u, P}), 0 < j < n. The converse follows immediately from

the orthogonality of {Pn(z)}3%, relative to u. O

Any PS {P,(2)}32, determines a moment functional u, called a canon-
ical moment functional of the PS {P,(2)}32,, uniquely up to a non-zero
constant multiple by the conditions

(2.7) (v, Po) #0 and (u,P,) =0, n>1.

Note that if {Pn(x)}5%, is a TPS relative to u, then u is a canonical

moment functional of {P,(2)}5%,.

We call a TPS {P, ('tc)}n=0 a discrete classical TPS if for each n > 0,
P,(z) satisfies a fixed second order difference equation of the form (1.5).

LEMMA 2.3. If the difference equation (1.5) has a PS {Ppn(z)}5%,
of solutions, then any canonical moment functional u of {Pn(2)}3%,
satisfies the functional equation

(2.8) V{a(a)u) = Ba)u.

PROOF. Suppose that {P,(z)}5%, is a PS of solutions of the dif-
ference equation (1.5) and let w be a canonical moment functional of
{Pn(2)}%,. Then we have for n > 1

0= An(u,Pn) = <U, An-I)n>
= (u,aA?Py(2 — 1) + BAP,(z — 1))
= (Bu — V(au),AP,(z — 1)),
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which implies (2.8) since {AP,(z —1)}32, isalsoa PS. O

COROLLARY 2.4. If the difference equation (1.5) has a
TPS {P,.(z)}3%, of solutions, then A\,, #0,n > 1.

PROOF. Assume that the difference equation (1.5) has a
TPS {Pa(z)}32, of solutions and let u be a canonical moment functional
of {Pn(2)}5%y. Then {P,(2)}52, is a TPS relative to u and by Lemma
2.3, u satisfies the equation (2.8). Assume A,, = 0 for some n > 1. Then
we have by (2.8)

0 =X Pru
= [a(2)A?Po(2 — 1) + B(2)APu(z — 1)]u
= a(z)[A?Py(x — 1)Ju + APy (2 — D)V{(a(z)u)
= V[(AP,(a))a(x )u]

so that (AP,(z))a(x)u = 0. Hence (AP,(z))a(z) = (l by Lemma 2.1 (ii)
and so AP,(z) = 0 since a(x) # 0, which implies n = 0 contradicting
the fact that n > 1. [0

Now we are ready to give our main results.

THEOREM 2.5. For any TPS {P,(z)}3%, relative to u, the following
statements are all equivalent.

(a) {Pn(z)}3%, is a discrete classical TPS.

(b) {APuy1(2)}%, is also a TPS.

(¢) {APuy1(2)}22, is a WTPS.

(d) The moment functional u satisfies a functional equation (2.8) for
some polynomials a(x) = ax® + br + ¢ £ 0 and B(x) = dx + €.

(e) For each n > 0, P, () satisfies a functional-difference equation

(2.9) a(2)AP(z) = (rnx + 85 ) Polx) + ta Pu_1(2), n>1,

for some polynomial «(z) # 0, independent of n, and constants
Tn, Sn, and t,.
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PROOF. (a) = (d) : It is just a special case of Lemma 2.3.
(a) = (b) : Assume that {P,(z)}%, is a TPS satisfying the equation
(1.5). Since (a) implies (d), we have by Lemma 2.1 (iii)

A Po(2)u =a(2)[AP, (2 — Du 4 B(2)[AP,(z — 1)]u
=V[(AP,(z))a(x)ul.

Hence

(@(2)tty APt (2)APas (2)) = —(V[(APas (2))a(e)u], Prss (2))
= =Ant1(u, Pat1(2) Paga(2)).

Therefore, {AP,4+1(x)}5%, is a TPS relative to a(a)u since An41 # 0,
n > 0 by Corollary 2.4 and {P,(2)}3%, is a TPS relative to u.

(b) = (c) : It is trivial by definition.

(¢) = (d) : Assume that {AP,41(2)}52, is a WTPS relative to v so
that

(2.10) (v, APp41(2)APpgi(2)) =0 for m #n, mand n > 0.
Set m = 0 in (2.10). Then we have for every n > 0
0= (v,AP(2)APr41(2)) = —=AP1(2){Vv, Ppi1(z))
so that (Vv, Pyt1(2)) = 0. Hence Lemma 2.2 implies
(2.11) Vo = fla)u

for some polynomial G(z) of degree < 1. Set m = 1 in (2.10). Then we
have, by Lemma 2.1 (iv) and (2.11), for every n > 1

0= (v APy (2)APny1(z)) = —~(V[(AP(2))], Peta(2))
—([VAPy(2)]v, Pog1()) — (AP (x — 1)V, Puti(2))
~[VAPy(2)|(v, Pu1(2)) — (Vo, [APy (2 — 1)] Paya(2))
—[Vﬁpz( N, Pat1(2)) — (u, B(z)[APo(z = 1)] Pt (1))
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Since (u, B(z)[AP:(x — 1)]|Ppt1(2)) = 0 for n > 1 and VAP (z) # 0,
(v, Pat1(z)) = 0for n > 1 so that by Lemma 2.2,

(2.12) v = a(a)u

for some polynomial a(z) of degree < 2. The equation (2.8) follows from
(2.11) and (2.12) and a(z) # 0 since v # 0.

(d) = (a) : Assume that the condition (d) holds. Then we have from
Lemma 2.1 (iv) and (2.8)

(au, AP, AP,) = —(V[(APy )au], Py)
—((VAP, )au + (APp(x — 1))V(au), Py,)
_<“'7 [(VAPIH Yoo + B(APpm(a ~ 1))]Pn>
=0

for 1 € m < n since deg[(VAP,)a + S(APn(x — 1))] £ m. Hence,
{AP,(2)}32, is a WTPS relative to au. Since a(2)A?Py(x — 1) +
B(z)APp(xz — 1) is a polynomial of degree < n, we may write it as

(2.13) a(2)A?Py(x — 1) + B(2)AP, (2 = 1) = Y _ ¢; Pj()

=0

for some constants ¢;, j = 0,1,...,n. Multiplying (2.13) by Pi(x) and
then applying u, we obtain for £k =0,1,...,n -1

n

cx{u, P = (u, Py Z ¢; P;j)
j=0
= (u, Pr[aA?Po(2 — 1) 4+ BAP, (2 - 1)])
= (Pifu — V(Prau), AP,(z — 1))
= (PxV(au) - V(Prau), AP,(z — 1)}
(VPkV au) — (VPy)au, AP,(z — 1))
—{au, A(VPAP,(z — 1)) + VP AP, (2 — 1))
—(au, AP, AP:) =0
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since {APn(2)}32, is a WTPS relative to ou. Hence, we have ¢; = 0,
7=0,1,...,n -1 and so
a(z)A*Pp(z — 1) + B(a)APyu(z — 1) = cn Pu(z)

and ¢, = A, by comparing the coefficients of 2" from both sides.

(a) = (e) : Assume that {Pn(2)}3%, is a TPS satisfying the equation
(1.5). Since a(z)APn(z) — 3na’’(2)aPa(z) is a polynomial of degree
< n, we may write it as

(2.14) a(z)APp(z) — %710’"(1’)3’}371(?’3) = Z cjPj(x)
2 =

for some constants ¢j, j = 0,1,...,n. Multiplying (2.14) by Pi(2) and
then applying u, we obtain for & =0,1,...,n -2

ck(u,P,?) = (u, Py zc] = (Pru,a(x)APy(x) — %na”(x)a:P”(a:))

= —(V(Prau), Py(z)) — (u, %na-"(m);l'PkP,l)
= —(Pr(z — 1)B(2)u + (VPr)au, Pp) — (u, %na”(:v)akaPn)

1
= —(u, [Pe(z = VB(x) + (VPi)a(z) + 3na”(2)ePule)]Pul2))
=0
since deg[Pr(z — 1)B(x) + (VPI\ z) + gna’(z)aPu(2)) < k+1 < n.
Hence, we have ¢; = 0, j = 0, 1 ..,n — 2 and the equation {2.14)

becomes (2.9).
(e) = (c) : Assume that the condition (e) holds. Then we have

(au, APRAP,) = (1, (AP, )aAP,)
= (u, AP,,,[(?‘,,.T + Sn.)f)n + tnPn—]D =0

for 1 < m < n since deg[(rpx + 3,)AP,] < m and deg(AP,,) <m — 1.
Hence, {AP,4+1(2)}5%, is a WTPS relative to a(a)u. O

The equivalence of the statements (a) and (¢) in Theorem 2.5 is new,
which can be restated in terms of Sobolev orthogonality as follows.
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THEOREM 2.6. Let {Pp(2)}5L, be a TPS relative to u.
Then {Pp(2)}22, is a discrete classical TPS if and only if there are two
moment functionals v, # 0 and vy such that

(2.15) (v1,APLAP,) + (vo, P Py) =0 for m # n, mand n > 0.

PROOF. Assume that {P,(z)}5%, is a discrete classical TPS relative
to u and satisfy the equation (1.5).
Then, by Theorem 2.5, {AP,+1(x)}3%, is also a TPS relative to a(x)u.
Then we have (2.15) with v; = a(2)u and vo = u. Conversely, assume
that we have (2.15). If we set m = 0 in (2.15), then we have (vo, Pp) =0
for n > 1. Hence, vy = cu for some constant ¢ by Lemma 2.2 so that
(vo, Pm Pp) = O0for m # n. Then we have from (2.15) (v1, AP, A P,) =0
for m # n, that is, {APn+1(2)}7%, is a WTPS relative to v;. By
Theorem 2.5, { Pn(x)}5%, is a discrete classical TPS. O

Recently, Branquinho and Petronilhio {4] found another characteriza-
tion of classical orthogonal polynomials : a TPS {P.(2)}5%, 13 classical
if and only if there are constants «,, b,, and ¢, for n > 2 such that

Pn(il!) = anQn(l‘) + ann—l(I) + CnQn—?(l')s n >3,

where Qn(z) = P, (z), n > 0.
We finally give the discrete version of the above result.

LEMMA 2.7. If a PS {P,(2)}5%, satisfy a three-term recurrence re-
lation

(2.16) 2Po(z) = anPut1(2) + A0 Po(x) + Yo Pn-i(x), n>1
with constants an, fn, and y,, n > 1, then {P,(x)}5%., is a WTPS.

PROOF. Let u be a canonical moment functional of {Pn(z)}3%,. Then,
by definition, (u,P,) = 0, n > 1. Applying u to (2.16), we obtain
(u,2Pp) = 0, n > 2. Multiplying (2.16) by z and then applying u, we
obtain {u,z?P,) = 0, n > 3. Continuing the same process, we have

(u,a™P) =0,  0<m<n

so that {Pp(z)}5% is a WTPS relative to u. 0O
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THEOREM 2.8. A TPS {P,(x)}3%, is a discrete classical TPS if and

only if there are constants ay, b,, and c,, for 1. > 2 such that
(217) Pn(l) = anQn(’T) + ann——l(l') + CnQn—Z(‘T), n = 2a

where @Qn(z) = APp41(x), n > 0.

PROOF. Assume that {P,(z)}$°., is a discrete classical TPS satisfy-
ing the difference equation (1.5). Then by Theorem 2.5 (b), {@n(2)}5%¢
is also a TPS relative to v = a(a)u. On the other hand, since {@Qn(2)}5%,
is a PS, we may write P,(2) as

n

Pu(x) =) ¢;Qj(x),

i=0

where ¢;j, 0 < j < n, are constants depending on n. Then we have for
k=0,1,...,n

n

Ck(”?Qi) = (U, Qk chQj> = (U»Qkpn) = (u, CVQkPn>-

=0

Since {Pn(z)}5%, is a TPS relative to u, (u,aQrP,) =0if b +2 < n.
Hence, we have (2.17). Conversely, assume that the condition (2.17)
holds. As a TPS, {Pn(x)}3%, satisfy a three-term recurrence relation
(2.16) (with v, # 0, n > 1). Applying the difference operator A to
(2.16), we have by Lemma 2.1 (iii) and (2.17)

rQn-1(2)
= (an - an)Qn(Jf') + (Bn — b, — 1)Qn—1(17) + ("/n - Cn)Qn—'Z(-’”%
n > 2.

Hence, {Qn(2)}5%, is 2 WTPS by Lemma 2.7 and so {P,(z)}32, is a

n=

discrete classical TPS by Theorem 2.5. 0O
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