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DUAL LIMIT THEOREMS FOR THE
GENERALIZED CURIE-WEISS MODEL:
MULTIPLE GLOBAL MINIMA CASE

SANG Ho LEE, Woo-CHUL KIM AND JONG W00 JEON

1. Introduction

For a probability measure Q with ®¢(t) = Jr exp(tz)Q(dz) < oo for
—h <t <h, h>0,let Ly be the class of probability measure P such
that for |t| < k, k >0

(1.1) Bp(t) = /Et exp(tz) P(dz) < co,

and

(1.2) /RQQ(:C)P(dx) < 0.

Let {XJ(-") :J7 =12,...,n} ,n = 1,2,... be a triangular array of

dependent and identically distributed random variables with the joint
distribution given by
(1.3)

1C(dzy, .. Sdr,) =z exp [nCo{(z1+ -+ Tn)/n}] H P(dz;),
=1
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where P € Lg, ¥g(t) = log ®¢(t) and z, is the normalizing constant,

(14) 2= [ explr¥of(a 4o+ wa)/m ][] Plde).
Rn :
=1
The model in (1.3) defines the generalized Curie - Weiss model which is
a direct generalization of the classical mean field model or Curie - Weiss
model in which the joint distribution is postulated as

(1.5) uEW(dey,--- ,dzn) = z; expl(z1 + -+ + z)%/2n] H P(dz;)
=1

The asymptotic behavior of S, = X; + -+ + X, as n — oo has been
studied in great detail for the Curie - Weiss model. The asymptotic
distribution of S, for this model when P is symmetric Bernoulli was ob-
tained by Simon and Griffiths(1973). Dunlop and Newman(1975) have
extended the result to the case where the random variables are vectors.
Ellis and Newman(1978 a,b) generalized the result of Simon and Grif-
fiths to a large class of probabilities.[see also Ellis and Rosen(1980)]. The
similar limit theorems for the generalized Curie - Weiss model were ob-
tained by Jeon(1978). Chaganty and Sethuraman(1985,1987) considered
the limit theorems for further extended models. Recently Choi, Kim and
Jeon(1989) extended the result of Ellis and Newmar(1978) for a gener-
alized model. On the hand, interchanging the role of P and @ in the
generalized Curie - Weiss model(1.3), Lee, Kim and Jeon(1993) for more
details on these models.

Let the distribution function Fg of a probability measure @ be such
that

Fo(z) =0, r<a
0 < Fo(z) <1, a<z<b
FQ(.’L’) =1, b<z

and Dg = (a,b) where —co < a < b < co. We define the dual of the
generalized Curie - Weiss model. The dual model is defined as the joint
distribution
,USD(dxl’ e+, dzn)
(1.6) _ T 0(de,
= ;" exp[n¥p{(z1 + -+ za) /)] [ ] Q(dz)).

i=1
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Note that dual of the original model is obtained simply by exchanging
the role of @ and P in (1.3). For well-definedness of the dual model, see
Lee, Kim and Jeon(1993).

For a probability measure @, define a function v¢g by
(1.7) Yo(t) = sug[ts — ®g(s)] t € R,
sE

where ¥g(s) = log [ exp(sz)Q(dz). In statistics this function is called
the large deviation rate of Q.
For the probability measures Q and P € L, define

(1.8) Gor(t) = 7o(t) = Up(t)  t€ Do,

where ¥p(t) = log [ exp(tz)P(dz) and Dg = (a,b) = {Q(t) : t €
(c, )}

Note that Wy (t) is strictly increasing on (c, d) [see Daniels(1954)].
This function was studied by Ellis and Newman(1978 a,b). For the dual
model, the function corresponding Ggp of the original model (1.3) is

(19) GPQ(t) = ’yp(t) - \I/Q(t) t € Dp,

where yp(t) = ssequ [ts—log [ exp(sz)P(dz)} and Dp = (¢,d) = {¥'n(t) :
t € (a, b)}.

Ellis, Newman and Rosen(1980) proved similar limit theorems for the
Curie - Weiss model. In this paper we prove some dual limit theorems
by conditioning technique in the case where Ggp (or Gpg) has several
global minima.

2. Limit theorems for the conditional case

For a random variable X and an event A, we write P(X € dw|A) to
denote the measure Pa(dw) defined by Pa(B) == P(X € B|A) for every
Borel set B in R. Given F a probability distribution on R , we write

(XnlAn) 4, F to mean P(X, € dw|A) converges weakly to F(dw).
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DEFINITION 2.1. A real number m is said to be a global minimum
for Ggp if ‘
GQP(U) > GQp(m) forall u e DQ.

When Dg = (—00, 00), it is well-known the following Lemma.

LEMMA 2.2. Given a probability measure @, let P € Lg. Then Ggp
is analytic and Ggp(s) — oo as |s| — oco. Thus, Ggp has a finite
number of minima. See Lee, Kim and Jeon(1993).

DEFINITION 2.3. For given probability measure Q and P € Lg, a
local minimum m for Ggp is said to be of type k if

w2k o
20! + o(u“")

(2.1) Ggpr(m +u) — Gop(m) = caxk , as u—0,

where co = G(QQ;)(m) > 0.

DEFINITION 2.4. For probability measures Q and P € Lg,let my,-- -,
mp be the global minima of Ggp with types be k1, - - , kp, respectively.
Then k = max{k;, --- , k1} is said to be the maximal type of Ggp.

DEFINITION 2.5. Let @ be a probability measure. Then P € Lqg is
said to be pure with respect to @ if Ggp has a unique global minimum.

Let h,(z) be a function on the set n*/?*Dg —m = {zr € R: z =
n!/%y — m u € Dg} satisfying

ha(z) = exp[-n{Gop(an™/** 4+ m) — Gop(m)}Je ™ (ta)[L + o(1)],
where 02(t) = (1), To(tn) = zn~"/** £ m_ Similar. define the function
hP(.) for the corresponding dual model.

DEFINITION 2.6. Let () be a probability measure. A probability mea-
sure P € Lg is said to be semipure with respect to @ if there is only one
global minimum of Ggp with maximal type.
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LEMMA 2.7. Assume that Ggp(-) has an extreme of type k at m.
Then there exist § = B(m) > 0 and 8P = B(mP) > 0 such that for
some ¢(m) >0 as n — oo,

(22)  ha(2) < e(m)exp[—cax2® /(2k)!] for |2| < Bnl/?*,
(2.3) ha(z) — exp[—czkzzk/(Qk)!]UZ?l(z) for each z

and for some ¢(mP) > 0 as n — oo,

(2.4) hY(z) < c(mP)exp[—chz?¥/(2k)!]  for |z| < BPnl/?k

(2.5) RD(2) — o51(2) exp|—cy 22 /(2k)!] for each z
where mP = ¥'h(m).

Proof. We only have to prove (2.2) and (2.3) due to the symmetricity.
Note that

Gor(m + u) — Gop(m) = caxu®* /(2k)! + o(u?*) as u — 0,
and there exist 81 > 0 and 32 > 0 such that for some c¢(m) > 0,
IGop(m+u) — Gop(m) — copu®* /(2k)!] < ¢(m)u**+! for all |u| < B
and O(u***1) = o(uzi) < (1/2)earu?*/(2k)!  for all lu| < B;. Hence
(2.2) and (2.3) are asserted by choosing 3 = min{f;, £,}.

LEMMA 2.8. Let X{n), o ,X,(.n) be independent random variables
with common distribution

M, . (dz) = exp[(m + zn /)¢ — Up(m + zn~ V2| P(dx)
and its dual
M? (dz) = exp[(mP + zn~Y )z — Uo(mP + 2n1/25))Q(dz).
Then

(2.6) Sp —nm?P d {5(s—mf)z) if k>2
' nl-1/2k NmPz,mP) if k=1
and
@7) 5P _nm d { 0(s —myz) if k>2
nl-1/2k N{miz, m1) if k=1,

where mP = Wp(m), mP = ¥'(m),m = Ui(mP) and my = e (mP).
Proof. See Theorem 4.1 in Lee, Kim and Jeon(1993).
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COROLLARY 2.9. Under the same assumption of Lemma 2.8, we have

(2.8) Sp/n—mP 2,0 and
(2.9) SPin—m <0

Proof. They are trivially true due to Lemma 2.8.

A variation of Laplace’s formulas will be used later to prove transfer
principles. We restate it for our purpose as follows{cf. Erdélyi(1956),
p.37).

LEMMA 2.10. (Laplace.) Let g and h be functions on the interval
(a, B) for which the integral (2.10) exists for each sufficiently large z > 0,
Suppose that h is continuous at t = «, continuously differentiable on o <
t<a+n(p>0)andh' >0ona <t<a+mn, h(t) > h(a)+e (¢ > 0),
ona+n<t< B Thenif h'(t) ~ a(t — a)*~! and ¢g(t) ~ b(t — @) as
t — «a for some constants A, v > 0,

sy J0= [ stestenona~ ir(3) (2) e

v ar

as I —r O0.

In the following, we prove two transfer principles that will be used as
basic tool to establish Theorems 2.14 and 2.15.

LEMMA 2.11. (Transfer principle 1.) Given probability measures Q
and P € Lg, there exist 3 > 0 and A > 0 depending only on m, and
BP > 0 and AP > 0 depending only mP”, such that for a € (0, A) and
any bounded continuous function h(-), as n — oo.

(2.11)

/ [/ h{n'/?*(sp/n — mP)/mP} H M, .{dz; )]hn(z)dz
R Isn/n—mDISG j=1

- /|z|gﬂn1/zk [/ _h{n!/2 (s, fn = mP)/mPY ] M,hz(dzj)] hn(2)dz 4 o(1)

=1
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and for a € (0, AP) any bounded continuous function hP(z), as n — oo
(2.12)
/ [/ B2 {n'/* (s /n — m)/mi} [T ME,(dz;)| hD (2)dz
RY|spn/n—-m|<a

i=1

= hP{nl/2k sp/n—m)/m 8 D (de MW hP(2)dz + o
VAN | S L OV 1 [T M2.de) | AR ()t + o)

where 8, = 1 + -+ Tn.

Proof. We only prove (2.11). It suffices to prove that as n — oo,

n

(213) /lz!sﬂnl/" [/I H Mn,z(da'/'])] hn(z)dz + 0(1)

sn/n—mP|>a j=1

and

n

(2.14) /‘zwnw [/l [T Ma,.(de;)| ha(2)dz + o(1)

sn/n—mP|<a ;1

The proof of (2.13) is relatively easy. By Corollary (2.9), we have for all
a >0,

(2.15) / HMn,z(d-Tj)—’O, as n — 00, for each 2.
Jan/n—m

D{)a j=1

Then (2.13) follows from the dominated convergence theorem by choos-
ing B > 0 small enough that Lemma 2.1 applies. The proof of (2.14)
is a little difficult. Defining v, as the distribution of V,, = S,/n — mP
on (R, [I—; Pn(dz;)), where Pp(dz;) = exp(mz;)/¥ p(m), we rewrite
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the left hand side of (2.14) as follows:

nl/zk/ exp [—n{GQP(m +z) = Gpg(m) + ¥p(m) ~ sz}]
lz1>8

X aal(m + z)[1 + o(1)] _~/|1J|Sa exp[nvz] v (dv)}dz

IA

nl/2k /|~[>;3 exp {—n{‘y‘q(m +2) = yo(m) - mDZ}]

e Y m+ 2 0 exp|nvz v, (dv z
x o5 (m + 2)[1 + “”_/ma plnvz] (d)]d

IN

%nlnk [/)ﬂexp[—(n = no){vg(m + z) — vo(m) - mPz — az}]

x exp[-no{Ggp(m + z) — GQP(m)}]o'(_zl(m +2)[1 + o(l)]dz]
exp[—(n —n m+z2) — yg(m) —mPz - az

+] [ expl=tn = mo){rglm + 2) = vg(m) )

X exp[—no{GQp(m +z) = Ggp(m)}] oél(m + z)[1 + o(l)]dz]

IN

2 ’”'“[/z)ﬂ‘*xP[—(n—na>h1<z>lax<z)dz

+/w>ﬂ exp[—(n ~ no)hg(‘w)]gz(w)dw]

= $n1/2% [ey exp{ —nh ()}][1 + o(1)] + ez exp{—nha(B) {1 + o(1)]
=0(e™™%), n— oo,

where

hi(z) =vqo(m + z) — yvo(m) — ’y'Q(m)z — Az

91(z) =exp[-no{Gor(m + z) — Gor(m)}1g' (m + 2),
hao(w) =yg(m — w) — yg(m) — 7b(m)w — Aw,

92(w) =g1(—w) and s = (1/2) min{h,(B), h2(3)}.

By choosing A > 0 so that h;(8) > 0 and hX(B) > 0,i = 1,2, we
establish the lemma.
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LEMMA 2.12. (Transfer principle 2.) Under the same assumptions
for P and @ as in Lemma 2.11, there exist 3 > 0 and A > 0 dependmg
only on m and AP > 0 and AD > 0 depending only on mP = ¥'h(m)
such that for a € (0, A) and for bounded continuous function h(-), as
n — 00,

(2.16)
1/2ksnn— DYy /pmP oz ) ()=
/R [/sn/ne[m",m”ﬂ] Al o/ )/nmP} [] M (dza)]h (2)d

i=1
= h{n'/?*(s,/n — mP)/nmP - My, =z d:c-}
o U M2t T )
hn(2)dz + o(1)

and for a € (0, AP) and any bounded continuous function RP()
(2.17)

/R [/an/ne[m,m+a] hP{n'/2¥ (s, /n — m)/nm,} ﬁ MP,(dz; )] hD (2)dz

7=1
= RO {n1/ (s, /n — m)/nm MpP, d:c‘]
/m_,,z,,e[o_ﬂ,)][ AR e/ )/ I}J]Jl ) (dz;)

x hP(2)dz + o(1),

where mP = 0" p(m),m; = 'é(mD),m = ‘I"Q(mD) and m? = Tp(m).

Proof. 1t suffices to prove the following results: as n — 0,

(2.18) f M., z(dz )| hn(2)dz = o(1),
zn—l/z"E[O,ﬂ][ sn /n€E[mP H J ]

D+a} J:]

and

(2.19) [/s,,/ne[mu o HMn,z(dx,)] n(2)dz = o1),

n—1/2k E[O,ﬂ]C

By Corollary 2.9 we have

(2.20) / HM ,2(dzj) = 0, n — oo for each z > 0.

n /ne[mD 1mD+a]C Jj=1
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Hence the result (2.18) follows from the dominated convergence the-
orem. The proof of (2.19) is similar to that of (2.14). We first rewrite
left hand side of (2.19) as follows:

/k _ —_n — — ! m
nif /zelo.ﬂ]ceXp[ (n = no){rg(m +2) - vo(m) - 75 )z}]

x /ve[o,a} exp[nvz]vn(dv) - exp [-no{Gop(m + z) - Ggp(m)}]
X aal(m + 2)[1 + o(1)]exp[-no{¥p(m + z) — U p(m) — mPz}]dz

< %nl/zk [/z>ﬂexp[—(n - ng)hi(z)]g1(2)dz=

+,/wzo exp[_(n - no)h3(w)]92(w)dw]

< n'/7*[eyn =1 exp{—nhy (B)}[1+ o(1)] + czn=1/2[1 + o(1)]
= o(1),

where hz(w) = vo(m — w) — yo(m) + vo{m)w and hy,g1,g2 are the
same functions as in Lemma 2.11. To complete the proof, we choose
A > 0 so that h1(3) > 0, and A{(8) > 0. Similarly, we can get (2.17) by

symmetry.

[~}

THEOREM 2.13. Let P and Q be probability measures which satisfy
the uniform local limit theorems of Daniels(1954). Then there exist
A = A(m) > 0 and AP = A(mP) > 0 such that the following holds. If
m is a local or a global minimum of Ggp(-), then for any a € (0, A),

(2.21) (-Sj- Sn € [mP —a, mP +a]> 4, 6(u —m?)
n|n
and for a € (0, AD)
D D
(2.22) <—Sl Sn € [m—a,m+a]> R o(u —m)
n | n

If m is a point of inflection of Gg;?(-) and czx(m) = Ggp(m) > 0 then
fora € (0, A),
(2.23) (—S—n

——E[mD,mD+a]) LR §(u —mP)
n




Dual limit theorem for the generalized C-W model 225

and for a € (0, AP)

(2.24) (57}?

If c3x(m) < 0, conditioning on Sp/n € [mP —a,mP] and SP € [m—a, m]
respectively, we have analogous results hold.

Proof. The theorem follows from Theorem 2.14 and 2.15 below.

THEOREM 2.14. Let P and @ as in Theorem 2.13. If m is a global
or a local minimum of type k for Ggp, then for a € (0, A), A as in
Theorem 2.13,

Sn

d
—n-e[mD—a,mD+a]> —  Fy.,,

.. D
(2.25) ( Sn — nm

man1—1/2k

and for a € (0, AP), AP as in Theorem 2.13,

Sb _nm |SD d
(2.26) (m —;n' € [m —a, m+ a] ) — Fk,c'zk,
where ¢y = cop(Uh(m)) 2, mP = ¥h(m), m; = 6(m?) and

N, 1/mP +1/e;) if k=1
dFy ¢y, =

exp[—c z2’°/(2k)!] .
Jr expp[—;:kt2k/(2k)g]dt if k> 2,

N0, 1/mP +1/¢)  if k=1
dFyq, =

exp[—ch, 22¥ /(2K)Y o
Tn exp[—Z:kt“/(iek)!]dt if k22

Proof. By Lemma 2.8, we have

S, — nmP d o(w — z) if £>2
mPnl-1/2k N(z, 1/mP) if k=1
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under M, ,. Also by Lemma 2.7 and the dominated convergence theo-
rem, we have, for each z,

(2.27)
hn(2) Ljaj<pmimny(2)  expl—corz?* /(2k)]
fifISﬂn””‘ h,(t) dt Sr exp[—caxt* /(2k)]dt

as n — O0.

Hence by theorem of Sethurman (1961), we obtain

(Sn — nm?P) 4, g
3 ? k,
mPnpl-1/2k C2k

under

f,zlgﬂnl/n H?:l Mn,Z(dzj)hn(z) dz
fIZISﬂ"”“ ha(z)dz

ﬂsll)(d“’l’ e d:vn) —

Hence using the transfer principle 1 we have the desired result

(2.28) mDpi-1/2k Fyc

under

WO (day, - | den) = K21 / T Mo (dz;)ha(z) dz,
sn/n€[lmP —a, mP+q) j=1

where K, is a normalizing constant. Since m? = '»(m) is a global

or a local minimum of type k for Gpg, we also get (2.26) in the same
manner. This completes the Theorem 2.14.

THEOREM 2.15. Let P and Q be as defined in Theorem 2.14. If m
is a point of inflection of type k for Gop with co; = cax(m) > 0. Then
for a € (0, A), A as in Theorem 2.13,

S,

S, —nmP d
- —nl € [mD, mD + a] -_— Fk,czk
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and for a € (0, AP), AP as in Theorem 2.13,

Sb SD
(2.30) (m]nl 1/2’6
where for k > 2, Fi c,, |[0, o0) = I(;>0)(2) dFk.c,, and Fi o |[0, c0) =
I(z>0)(z)dFk,c;k-
If cox = cox(m) < 0, we condition on S,/n € [mD — a,mD] and
SP/n € [m — a,m] and then analogous results hold with the limit dis-
tribution supported on (—o0,0).

[0, 0),

G[m m+a]> R Fyep,

Proof. By Lemma 2.8, we have
Sp — nmP d S(w — 2) if £k>2
mPnl-1/2k { N(z, 1/mP) if k=1
under M, , Also we have, for each z, as n — oo,

hn(z) I(ze[l),ﬂnl/“))(z) . exp[—Czkz2k/(2k)!]
JSeeto,pmrrary ha(t) dt [ expl—coxt?* /(2k)dt”

by Lemma 2.7 and the dominated convergence theorem. Hence by the-
orem of Sethuraman (1961), we obtain

(Sp — nmP)
mDnl1-1/2k

(2.31)

d
- Fk,C'zk [0, OO)

under

f|z|<ﬁn1/2" HJ 1 M, z(dl'])h (2) dz
f n(2)dz

(3)(dm1, e dy) =

. By the transfer principles we have

(S, —nmP) d
2.32 —— Fi . ,
( 3 ) mPnl“l/z" - k, 2k [O OO)
under
pP(dzy, -, dzn) :Ix"n_l/ HMn (dzj)hn(2)dz,
sn/n€[MP mP +4q] j=1

where K, is a normalizing constant. Similarly we get (2.30) by symme-
try.
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REMARK 2.16. We can immediately extend the definition of cz; =
Ggf))(m) to the case that &k is an half integer greater than or equal to
3/2 and ¢y is any nonzero real number.

THEOREM 2.17. (J.Sethuramen) Let A, be a sequence of probability
measure on T' x W, where T and W are topological spaces. Let u, be
the marginal probability measure of A,, on T and v,(t,-) be a conditional
probability measure on W. Suppose that u, converges to a probability
measure i for every measurable set in T and for almost all t with respect
to i, vn(t,-) converges weakly to v(t,-). Then A, converges weakly to v,
where A(A x B) = [v(t, B)u(dt) for every measurable rectangular set
A x B.

3. Limit theorems for the maximal case

In this section we prove the analogous dual limit theorems in section
2 when Ggp has a local minimum of maximal type.

DEFINITION 3.1. Let Ly C Lq be the class of probability measures
P such that

térgq Gop(t) < min { lirtrgl?f Gorp(t), hrtrii;lf GQp(t)},

where Dg = (a, b). Similarly, we define L, C Lp by exchanging the
role of @ and P.

REMARK 3.2. By Theorem 3.2 of Lee, Kim and Jeon(1993), if P €
Ly, then @ € L', and vice versa.

LEMMA 3.3. For a probability measure Q and P < Ly, define

Gop = inf Gop(:
or = inf op(s)

and let V be any closed (possible unbounded) subset of Dg which contain
no global minimum of Ggp. Then there exists € > 0 so that as n — oo,

exp(nGbP)/vexp[—nGQp(u)]Jc_Jl(\II'Q—I(u))du = 0(e™ ™).
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Proof. By assumption, there exists € > 0 so that

Siél{/GQp(S) > stiEanQ GQP(S) + e = Gap + €.
Hence,
exp(nGQp)/ exp| nGQP(u)]UQ (Yo " (w)) du

< exp[—(n —ng)] exp(GQp)/ exp[—noGgop(u)|du < Ke™™¢
R

= 0(e™ ™).
Note that for Q € L5, we can obtain the similar result.
THEOREM 3.4. Let Q be a probability measure @ and P € Lg. Let

{mu, .-+, m,} be the set of global minima of Ggp of type {k1, --- , k,}
respectively, and let k* = max{ky, ---, k,}. Then {mP, ... mDP} is
the set of global minima of Gpg of type {ki, -, k,}, where mP =
Uh(m;),t = 1,2, -+, s. Further
s : —mD
(31) Su 4, T Mmiu = mP)
n 2im1 b(mi)
and
D S WM (mPYs(u - mP
(32) E_Tl_ _L Z‘l:l (sml ? (uD m; )
n Zizl b (mi )
where
[c2k(mi)]—1/2k; if ki = k*
b(m;) = .
0 otherwise
¥ (mP) = { [eou(mP) Vi ks =
' 0 otherwise

and c3k(m;) = G(2 (mi), c2k(m )= (2k )( D)

= ean(mi)(Wh(ma))

Proof. It suffices to prove that for any bounded function h(-), as n —
00
" R(mPYb(m;
(33) / h(sn/n)ﬂg(dm], Sy dIn) _— 21=Z]n(mz ) (ml)
Rn

i=1 b(m:)
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Defining P,(dz,, --- ,dz,) = H;:l exp[z;z — ¥p(2)]P(dz;), we express
the left hand side of (3.3) as

(3.4) /R" h(sn/n)pS(dzy, -+ dzy)
= K;* [ expl-nGar(2)log! ()1 +o(1)]
. [/ h(sn/n)P,(dzy, - - ,dz,)| dz,
-

where K, = [ exp[—nGQP(z)]aal(z)[l + o(1)] dz is a normalizing con-
stant. Let £ > 0 be a number such that 0 < £ < min{jm; —m;|:1<i <
J <standlet V=R—-uUL (mP —¢mP +¢). By Lemma 3.3 , there
exists € > 0 such that

(3.5) exp(nG*Qp)/v exp[—-nGQP(z)]a&l(z) dz = O(e™), as n — oo.

Foreachi =1, ---,s, let k = k(m;), cak = c2k(m;). Then

mi+§
W exp(nGp) [ expl-nGap(ellog! ()11 + o(1)
x [/Rn hsn/m)Pu(dzy, .. de,)] d
13
= nl/2k / . exp[~n(Gop(mi +z) = Gop(mi)leg' (m; + 2)[1 + o(1)]

3.6
( ) X [/R" h(sn/n)P,(dz+, ... ,dn:n)] dz

= [ el Hoa ) [] M) o)
= h,,(mP)c;,j/“/ expl—22%/(2k) d + o(1), 7 — co.
R
In deriving the last equation, we used Lemma 2.7, Corollary 2.9 and
the dominated convergence theorem. Now (3.3) follows from (3.5) and

(3.6) separately applying to numerator and denominate of (3.3). (3.2)
can be proved easily by symmetry.
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THEOREM 3.5. Let P and Q be as defined in Theorem 3.4. Let
m be one of the global minima of maximal type k* of Ggp. Then
mP = W'p(m) is a global minimum type k* of Gpg and
)

(Sn —nm d

(3.7) mDpi-1/7% b(m)Fer c,,.
and
(Srlz) - nm) d —
(3.8) pg pyE T b(m)Fee .,
where
{ N(0, l/mf)+1/c2) if k=1
dFkt’c . = expl[—c tzzk‘/(Zk")!] ' .
- fnexi[—cii-:w/m.),] dt if k*>2,
_ b(m) o b(mP)
bm) = =5———r—, bmP)= =5
2z Hms) )= WD)
and
{ N(0, 1/my +1/c3) iR =1
dFk‘,c' . = ex [—C’ .22“- /(2k')|] . .
: Jr exl;[—cz‘:k.t%‘ J(2k*)Y dt if k* > 2.

If m is not a global minimum of Ggp of maximal type then mP is also
not a global minimum of Gpg of maximal type and

°)

(3.9) (Sn ‘1’/"" 4, 0  fore>1
n c

and
D_

(3.10) Baznmm) 4 o presi

nl/ec

Proof. We define Y, = (S, — nm?)/m® for some positive number a
and denoted by N, = N,(a) the event {S,/n € [mP — a, mP + q]}.
Then by conditioning we have for any Borel set B,

(3.11)
Pr{Y, € B} = Pr{Y, € B|N,}P{N,} + Pr{Y, € B|N;}Pr{N_}.
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If B is bounded and a < 1, there exists a positive number ¢ > 0 so
that {Y,, € B} C {|Sn/n—mP| < en® 1} : the latter set is disjoint from
Ny, for all sufficiently large n, so that Pr{Y, € B|NS} — 0. In the case
where m is not a global minimum of maximal type, we let a = 1/c and
choose a sufficiently small so that [m? —a, m? +a] = 0, where 7(+) is the
discrete distribution given by the right side of (3.1). Then by Theorem
3.4 we have Pr{N,} — 0. Hence from (3.11), Pr{Y, € B} — 0 for any
bounded Borel set B and thus

(Sp —nmP) 4
nl/e — 0

as desired. In the case where m is a global minimum of maximal type
k, we let « = 1 —1/2k and choose a in accordance with Theorems 2.13
and 2.14. It follows from Theorem 3.4 that Pr{N,} — b(m). Thus by
Theorem 2.14 and (3.11) we have for any bounded Borel set B that

pPr{Y, € B} - b(m)/ dFe. ...
B

as desired. By symmetry we get (3.10). This completes the proof.
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