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PROBABILITY INEQUALITIES FOR PRODUCT
OF INDEPENDENT POISSON PROCESSES

JOONG SuUNG KwWON

1. Introduction

Let (8,8, P) be a finite measure space. A process

Y = {Y(f) | f : nonnegative measurable function on S}
is said to be a Poisson process with parameter A\, where A = P(S) if it
has independent increments, in the sense that Y (4;), Y(42), ..., Y(4)
are independent whenever Ay, A;, ... , A are disjoint subsets of S, and
the marginal distributions are Poisson with parameters P(A4;). We can
represent such a Poisson process as follows : Let {U;} be a sequence
of independent identically distributed S-valued random variables and
N =Y(S). Then, for a function f on S, we can write

N
(1.1) Y(f) =) f(U:).

Note that Y is a well defined independently scattered atomic random
measure, that is, it is a countably additive set function on a measurable
space (S,S) with values in L°(2, P) which is independently scattered
where ({2, P) denotes underlying probability space. Following the clas-
sical measure theory, since the process ¥ mentioned above is an atomic
random measure the existence of product random measures is evident
due to Fubini theorem. But resulting product measure is no longer in-
dependently scattered.
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Let Y1 and Y; denote two Poisson processes on S; and Sg respectively.
Let {U;} and {V;} be sequences of independent identically distributed
S;- and S;- valued random variables. For a function f on S§; x Sj,

Ny N

Yl XY2 f) ZZfUHV)a

i=1 j=1

where N; = P;(S;), i = 1,2. This product process naturally arises as
building blocks of product of infinitely divisible processes when we use se-
ries representation as does (1.1) in the infinitely divisible processes(Adler
and Feigin(1984), Bass and Pyke(1984)). However they are not studied
enough to be understood. Especially their probability bounds are not
known yet as far as we know, which is the motivation of our study. In
section 2 we devote to deriving of exponential probability bounds for
product of independent Poisson processes. As a by-product, we obtain
probability inequalities for product of independent empirical measures.
In section 3 we will calculate variances of various products of Poisson’s
appeared throughout the paper.

2. Probability inequalities

In this section we will obtain probability bounds for product of inde-
pendent Poisson processes. For this we need the following elementary
lemma whose proof appeared in Bass and Pyke(1984)

LEMMA 2.1. (Bass and Pyke(1984)) Let N be a Poisson random vari-
able with parameter A. Then

P(N >n) < exp(=A)exp(—nlln(n/A) —1]) g2 A
< exp(—A)exp(—n) ifn > e*A

PROPOSITION 2.2. Let Ny and N, be independent Poisson random
variables with parameters A and u respectively. Then

P(N:1 Ny > n) <exp { (A + ) + v/20(1 = log (v20/ () + ) }
if > (A4 u)?/2,
<exp(—(A+p) =20  if n>e'(A+p)?/2
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Proof. Note that
(2.1) NiNy < (NE+ N2)/2 < (N1 + No)2J2.

By using Chebyshev’s inequality and the convexity of e*, we obtain

P(NiN2 >n)=P (exp(s\/NlNg) > exp(s\/ﬁ))
< inf E(exp(s(v/N1Nz — vi7))).

Since Ny and N, are independent, (2.1) implies

E (exp(S\/ N1N2)) < exp(—(A + p)) exp (()‘ +4u) exp(-S/\/i)) ’

where we used E(exp(cN)) = exp(v(expc — 1)), for N Poisson with
parameter v.
Let ¢(s) = (A + p)e’/‘/i — $,/1. Then from ¢'(s) = 0 we have

= 2log (/27 — (A + p)) and ¢"(s1) > 0. Hence,

P(N1Nz > ) < exp(=(A + ) exp (/27 (1~ log (v/2 = (A + 1)) ) -

In particular, if n > e*(A + p)?/2, then P(N; N2 > ) < exp(—(X +
#)) exp(—+/21).

ProPOSITION 2.3. Under the same assumptions as in Proposition
2.2,

P(N1 Ny > n) <exp(—A)exp(—+/n/a) + exp(—u) exp(—a+/n)
if a>0 and 7> max{a’e*)?, e*p?/a®}
<2exp(—A)exp(—./n/a)
it a={0-w+VO-wZtam} /2
and n > max {a 2et A% e /12/a2}
Proof. Notice that P(N1N2 > ) < P(N1 > \/n/a) + P(N2 > a\/7).

By lemma 2.1, we have the first inequality, and from A+,/p/a = p+a./n
we have the second.



198 Joong Sung Kwon

PROPOSITION 2.4. Under the same assumptions as in Proposition 2.2
P(N1N; > n) < exp(—n) exp(—z) + exp(—p) exp(—y)
ifz+y=+/2nandn > e+ u)?/2.

P(N1, Nz > n) < 2exp(—A) exp(—{(1 — A) + v/2n/2})
if p > max{{(2e? + 1)A — u]?/2,[(2e* + D) — AJ?/2,e* (X + 1)?/2}.

Proof. Let x and y be positive real numbers such that ¢ +y = /2.
Then by (2.1) we can write P(NyN; > n) < P(N; + N2 > /2n) <
P(N; > )+ P(N; > y). Now use lemma 2.1 again.

For notational simplicity we denote Z = Y] x Y5.

THEOREM 2.5. LetY; and Y, be Poisson processes on S, and S, with
parameters A and u respectively. Let Ny = Y1(S;) and Ny = Y3(S2).
Then for f a nonnegative bounded (81 x S2)-measurable function with
b= ff(dPl x Py) and 6} = fod(Pl x P,) — &2, we have

P(Z(f)>n)

§2(n — 1) 8%(n — 1)’
S exp <"‘4T<75} +6(n - 7/3))) e ('A‘if(fﬁ? +6(n -7/ 3”)

+P(N1N2 > T/6),

provided that
8%(n — 7)*
27(7’(5?r +6(n—7/3))
Note that E{(Y; x Y2(f))/Ni1 Ny} = 6. When Ny =0or N; =0

we interpret (Y; x Y2(f))/NiN, = 1. Using this expression, we can
proceed to the proof of theorem 2.5.

< 1.

Proof of Theorem 2.5. Observe that for any 7 > 0,

P(Z(f) >n)

(2.2) =P(Z(f) > n,N1N2é > 1) + P(Z(f) > n. N1 No6 < 7)

< P(NyNy >71/0)+ P (—]\%_(]\{7)6 > n/r) .
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The first term in (2.2) can be bounded by proposition 2.2. Hence it
remains to handle the second. For the second term note that

P [ Z(f) >n/7|Ny =m, Ny = n] = P[Tma(f) > né/7]

NiNyé
and o
o= D Vs) = P x Qul)
where P, (resp. Q) is the empirical measure based on Uy,Us, - ,Un

(resp. Vi, Vo, -, V3) with L(U) = Pi(-)/P1(S1) (resp. L(V)
= P3(-)/P2(S2)). Here we will call Pp, x @, the product of empirical
measures P, and @,. Since the bound for the product of empirical
measures is of independent interest we state it separately as:

THEOREM 2.6. Fory > 0,6 = [ fd(PyxP;) andos* = Var(f(U;,V}))

min(m, n)y? }

P> 54) < esp{ -0

Proof. Assume that min(m,n) = m and write T =n7' S 1_, T,‘,,",Z,
where

n—k-~
T,(nk,z =m™! { Z
i=1

1

f(Ui,‘/i+k+=l)+ Z f(Uia‘/i-f»k——n—-l)}-

i=n—k+2

That is, each T¥) is a sum of m-independent identically distributed

random variables and each T\ has the same distribution. Hence by
Hoeffding’s inequality(1963)

exp(sTpn) < n7! Z exp(sT,(nk,z), and so
k=1

E(exp(sTmn)) < E(exp(sT)).
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Thus E(exp(sTimn — 57 — 56)) < E(exp(sTa — sy — s6)).
By Bernstein’s inequality

(2.3) P(Tn — 6 >7) < exp {—-2@%7——#-35} .

If min(m,n) =n , then by the same argument,

TL’72
(2.4) P(Tmn—6>7)SeXp{—m5}.

Comnine (2.3) and (2.4), then we have

: 2
P(Tpn > 6 +7) Sexp{ ml_n(r_nﬂl_):f_}

 2(0% + v/3)
which completes the proof of theorem 2.6.

Back to the proof of Theorem 2.5. To complete the proof of theorem
2.5, we use theorem 2.6.

P(Ton(f) > né/7) = P(Tmn(f) > 6 + é(n/7 — 1))

min(m,n)é?(y — 7)?
= exp (“ (63 + (1 — 7/3)) ) '

Therefore,

P(% > 17/T>

182(n — )2 ,62(n — )2
sE (eXp(" QT(T]?SI} +(g(17 _)T /3))) ) +E (e"p(_ 27(:(\57} +(g(,, -)7/3))) )

<o (Mo (i 7))

2y _ )2
+exp (“ (eXp (" 27‘(7’(5; _(:5(77 z 7/3))) - 1))
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Since 1 —e™* =z —z2/2+4 (23/3! —2*/4) + .- > r—z2/2 > 2/2, for

52( _1_)2
27‘(1'6;-{-”6(71—1'/3)) <1, then

Z(f) 8%(n —1)°
F (N1 Nyb ~ ”/T> < exp (—/\4T(T6; +6(n - 7/3)))

8%(n — 1)
exp (_“4T(ns} +8(n - 7/3))) ’

0 < r < 1, we have, if

which completes the proof of our main theorem.

3. Remarks

In this section, for the completeness of the paper, we include the
variances of the products which appeared in many places throughout
the paper.

PROPOSITION 3.1. Let |A| = 4. Let ¥; and Y, be Poission processes
on 1% and I** with parameters A and p respectively. Let Ny = Y;(I%)
and Ny = Y5(1%%). Then

(1) Var(NuNolA]) = [AP (v + Mo + Au2)

(2) Var(Y1 X Y2(:4)) = /\/LIAl + /\yzElAzulz + /\2yE|A2U1 n A2U2|.
or, by symmetry, Var(Y; x Y3(A)) = Au|A| + N pE|Av|? +
/\;JQElAlv1 N A1V2,-

(3) Var(Tmn) = (mn)~ {|A|+(1=m—n)|A? +(n—1)E| Ay, N Ay,
+(m — 1)E|Asu, N Aou,|}, where T, = (mn)_l pOY Z?___l
bwi,v;)(A)-

(4) Var((Y1 x Y2(A))/N1N,|A|] = C|A|™!, where C is a constant
depending on Ny, N, and |A.

Proof. (1). Var(N1Nz|Al) = E(N1 Ny |A|)? — {E(N, N, |A])}? = |AJ?
(M + M+ Mp?).

For (2) recall Y1 x Y3(A) = [, Ya(A2.)dYi(z) = SN Va(Aps,),
where Ny = Y1(I1?') and N, = Ya(1%).
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Then E(Y; x Y2(A)) = ENyu|Azu| = ApE|Azv| = Apu|A| where U is a
uniformly distributed random variable on I* and E|4zy| = [j4, |A2v|dU
= |4].
E[Y] X }’2(14)]2
N N

=F Z Z }/2(A2l.' )Y'z(Afuj )

=1 j=1
=E{N E[Y; (A2u|U)] + N1(N1 = 1)E[Y2(A2u,)Y2(A20,)]}
=T, + E(Ny(N: — 1))E( I).
Clearly I, = AEu|dsul + p2|42ul’] = AplA| + M E(JA2ul?). And
EN(N,-1) = A2, Finally, notice that Ay, and Ay, are independent
identically distributed. Hence
I, = E[Y2(Azv,)Y2(A2u,))
=F [Y2(Azu, \ A2u,) + Ya(A2u, N A2u,)] [Y2(A2v, \ A2u,)
+Y2(A2v, N A2u,)]
=E[Y3(A2v, \ A2u,)Y2(A2vu, \ A2u,)
+ Y2 (Aqu, \ A2v,)Y2(4Azu, N A2v,)
+ Ya(Azu, N Az, )Ya(A2u,)Y2(A2u, \ A2u,) + Y (Azu, N Azu,)]
=12 (| Azu, \ Az2u, || A2u, \ Ao, | + 1420, \ A2u,||A2u, N Azu, |
+ |A2u, N Asu, ||Azu, \ Aouy | + |42y, N Azu, 7]} + plAzu, N A2y, |-

Therefore,

E 1 =i E{(|42u, \ 42u,| + |42v, N A, |)(1 420, \ A2u, |
+ |A2u, N A2, |)} + pE |A2u, N A2u,
=4 E(|A2v, || 420, |) + E |A2u, N A2, |
= |AP + pE |Asu, N Asu, ),

where we used the fact that A,y, and Azy, are independent and

E(A2u, \ A2u,||420, 0 A2u,]) = E(|A20, \ Az, 420, N 42u,])-
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Therefore
Var(Y1 x Y3(A)) = AplA| + M’ E|Azu)? + N2 pE| Ay, N Asy, ).
Similiary, when we condition on Y; we have, by symmetry,
Var(Yr x Ya(A)) = Ap|A] + N pE|Arv[? + MEE| A1y, N Ay,
For (3), clearly E[T),,] = |A|. Now

a

™3
™=

1 11=1

x

=1

E [ii&u.-,m(A)J =E [
> (%

o[

=1 + I,.

> bqus,v; )(A)é(u,,,v,)(A)):l

J

[V]a
M=

5(uf.w)(A)5(u;,v,)(A))J

..
Il
—
-
Il
-

INgE

Z b(u;,v; )(A)5(uk,v,)(f4))]

1l=

o,
-

H

On the one hand,

Li=) 3 Elw,vp)y(A+ 33 Elbw. v (A, v (A)]

=1 j=1 =1 j#k
=mn|A| + m(n® — n)E|A;y, N Ay,

On the other hand,

I = ZZE 6wy, v (A, v )(A4)) + ZEE (6w, v, (A, vy (4))
Jj=lizk i#k j#£1

=n(m? - m)E|Asy, N Azy,| + (n? = n)(m? — m)|A|?,

where 8, v;)(A4) and 6, w)(4), i # k and ;7 # I, are independent
identically distributed. Therefore
Var(Tp,) = (mn) 31 4+ 1) — |AJ
= (mn) H{[Al+ (1 = m = n)|AP + (n — 1)E|A1v; N Ay,
+(m = 1)E|Asu, N Agy, |}
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For (4) we assume, by convention, that (¥; x Y2(4))/N1N2|A| = 1 on
the event { NN, = 0}. Clearly

Yi x Ya(A4)
E NN AL «
[ NNz |A| vy N2 >1) + v Na 1)

Y1 x Yo(A
=K |:E (”_I‘—'LI[NIN",ZI] N},A’z)]

NN, | A
Let us calculate the variance of (Y; x Y2(A4))/N1N2|Al

+P(N1=0 or N2:0)21

Var[(Yl X Yg(A))/N] NQ}A”

(Yl x Y2(A)

~E
Ny N, A

2
l[1\/11\72>0]> j| + exp(—(/\ + :u)) -1

~E [E((%%‘?lmmpo]y l N, Ng)] texp(—(A+p)) -1

=|A|T E{(N1N2) " v, vy o) + (N1 — 1)(N2 — 1)(N1N2) " v, N, >0)
+ A7 (N = D(N1N2) T E Ay, 0 A [, v, o)
+ |A|TH(N2 — 1)(N1N2) T ElA2u, N Azv, v, v, >0))
+exp(—(A+p)) -1

=C|A|™,

which completes the proof of (4)(note that C < 1).
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