CONTINUITY OF THE OPERATORS ON THE SPACES \mathcal{D}_p AND AND THE DUAL SPACES \mathcal{D}_p'

YOUNG SIK PARK

0. Introduction

First we recall some properties of the spaces \mathcal{D}_p and study the continuity of the operators on \mathcal{D}_p . We also consider the continuity of the operations on the dual spaces \mathcal{D}'_p with the weak topology.

1. Definitions and notations

The normalized Lebesgue measure on R^n is the measure m_n defined by $dm_n(x) = (2\pi)^{-n/2} dx$. The usual Lebesgue spaces L^p , or $L^p(R^n)$, will be normed by means of m_n :

$$||f||_{L^p} = \left\{ \int_{\mathbb{R}^n} |f|^p dm_n \right\}^{1/p} \qquad (1 \le p < \infty).$$

For each $t \in \mathbb{R}^n$, the character e_t is the function defined by

$$e_t(x) = e^{itx} = \exp\{i(t_1x_1 + \dots + t_nx_n)\}$$
 $(x \in \mathbb{R}^n).$

The Fourier transform of the function $f \in L^1(\mathbb{R}^n)$ is the function \hat{f} defined by

$$\hat{f}(t) = \int_{R^n} f e_{-t} dm_n \qquad (t \in R^n).$$

If α is a multi-index, then

$$D_{\alpha} = (i)^{-|\alpha|} D^{\alpha} = \left(\frac{1}{i} \frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{1}{i} \frac{\partial}{\partial x_n}\right)^{\alpha_n}.$$

Received September 1, 1994. Revised November 1, 1994.

Key words: Fourier transform, weak topology, isometry.

If P is a polynomial of n variables, with complex coefficients, say

$$P(\xi) = \sum C_{\alpha} \xi^{\alpha} = \sum C_{\alpha} \xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}},$$

the differential operators P(D) and P(-D) are defined by

$$P(D) = \sum C_{\alpha} D_{\alpha}, \qquad P(-D) = \sum (-1)^{|\alpha|} C_{\alpha} D_{\alpha}.$$

The relation $S_1 \in S_2$ shall mean that the closure of S_1 is compact and contained in the interior of S_2 . If $\{S_j\}_{j=1}^{\infty}$ is a sequence of sets, the relation $S_j \nearrow \nearrow S$ shall mean that $S_j \in S_{j+1} (j=1,2,\cdots)$ and that $S = \bigcup S_j$. Let p be a real-valued function on \mathbb{R}^n , continuous at the origin and having the property

$$(\alpha) \qquad 0 = p(0) = \lim_{x \to 0} p(x) \le p(\xi + \eta) \le p(\xi) + p(\eta) \quad (\forall \xi, \eta \in \mathbb{R}^n).$$

DEFINITION 1.1. Let $\mathcal{M}_0 = \mathcal{M}_0(n)$ be the set of all continuous real-valued functions p on \mathbb{R}^n satisfying the conditions (α) and

$$(\beta) \qquad J_n(p) = \int_{|\xi| > 1} \frac{p(\xi)}{|\xi|^{n+1}} d\xi < \infty.$$

DEFINITION 1.2. Let p satisfy (α) . If $\phi \in L^1(\mathbb{R}^n)$ and if λ is a real number, we write

$$||\phi||_{\lambda} = ||\phi||_{\lambda}^{(p)} = \int |\hat{\phi}(\xi)| e^{\lambda p(\xi)} d\xi.$$

Let \mathcal{D}_p be the set of all ϕ in $L^1(\mathbb{R}^n)$ such that ϕ has compact support and $||\phi||_{\lambda} < \infty$ for all $\lambda > 0$. The elements of \mathcal{D}_p will be called test functions.

DEFINITION 1.3. Let p_1 and p_2 be the elements in $\mathcal{M}_0(n)$. If for some real a and positive b we have $p_2(\xi) \leq a + bp_1(\xi)$ (${}^{\forall}\xi \in \mathbb{R}^n$). Then p_2 is said to be dominated by p_1 with some constant translation. We denote this by $p_2 \prec p_1$.

DEFINITION 1.4. If K is a compact subset of \mathbb{R}^n , $\mathcal{D}_p(K) = \{\phi \in \mathcal{D}_p; \text{ supp } \phi \subset K\}$. Note that the space $\mathcal{D}_p(K)$ is a Fréchet space under the natural linear structure and the seminorms $||\cdot||_m \quad (m=1,2,\cdots)$.

DEFINITION 1.5. If Ω is an open subset of R^n and if $K_{\nu} \nearrow \nearrow \Omega$ we define $\mathcal{D}_p(\Omega)$ as the inductive limit of the Fréchet spaces $\mathcal{D}_p(K_{\nu})$, i.e., $\mathcal{D}_p(\Omega) = \operatorname{ind} \lim_{K_{\nu} \in \Omega} \mathcal{D}_p(K_{\nu})$.

DEFINITION 1.6. Let $\mathcal{M} = \{ p \in \mathcal{M}_0(n) : p \text{ satisfy condition } (\gamma) \}$:

$$(\gamma)$$
 $p_0 \prec p$, where $p_0(x) = \ln(1+|x|)$ $(x \in \mathbb{R}^n)$.

2. The spaces \mathcal{D}_p and continuity

PROPOSITION 2.1. $p_2 \prec p_1$ if and only if there are some real a and positive b such that $a + bp_2(x) \leq p_1(x)$ for all $x \in \mathbb{R}^n$.

Proof. It is obvious

THEOREM 2.2. ([2] Thm.1.3.18) If $p_2 \prec p_1$, then $\mathcal{D}_{p_1} \subset \mathcal{D}_{p_2}$ and $\mathcal{D}_{p_1}(\Omega)$ is dense in $\mathcal{D}_{p_2}(\Omega)$ for each open $\Omega \subset R^n$. Conversely, if for some compact $K \subset R^n$ with $K \neq \phi, \mathcal{D}_{p_1}(K) \subset \mathcal{D}_{p_2}(K)$, then $p_2 \prec p_1$.

Proof. For some real a and positive b, we have $p_2(x) \leq a + bp_1(x)(x \in \mathbb{R}^n)$ and hence

$$||f||_{\lambda}^{(p_2)} \le e^{\lambda a} ||f||_{\lambda b}^{(p_1)} < \infty \qquad (f \in \mathcal{D}_{p_1}).$$

Hence $\mathcal{D}_{p_1} \subset \mathcal{D}_{p_2}$. Let $u \in \mathcal{D}_{p_2}(\Omega)$ and let $u_{\epsilon} = u * f_{\epsilon}$ with $f \in \mathcal{D}_{p_1'}(\Omega)$, where $f_{\epsilon}(x) = \epsilon^{-n} f(x/\epsilon)$ and $p_1'(x) = \sup_{|\xi| \leq |x|} p_1(\xi)$. Then $u_{\epsilon} \in \mathcal{D}_{p_1}(\Omega)$ and $\lim_{\epsilon \to 0} ||u - u_{\epsilon}||_{\lambda}^{(p_2)} = 0$.

To prove the converse, choose $K \subset \mathbb{R}^n$ compact with $K \neq \phi$ such that $\mathcal{D}_{p_1}(K) \subset \mathcal{D}_{p_2}(K)$. The inclusion map of $\mathcal{D}_{p_1}(K)$ into $\mathcal{D}_{p_2}(K)$ is closed and hence continuous by the closed graph theorem. Therefore, for some positive constants b and b' we have

$$|b'||f||_1^{(p_2)} \le ||f||_b^{(p_1)} \qquad (f \in \mathcal{D}_{p_1}(K)) \qquad \cdots (*_1).$$

Let $t_0 \in \mathbb{R}^n$ and g be a nontrivial element in $\mathcal{D}_{p_1}(K)$ and define $f = ge_{t_0}$. Then $\hat{f}(t) = \hat{g}(t - t_0)$. We get

$$||f||_1^{(p_1)} \le e^{bp_1(t_0)}||g||_b^{(p_1)} \cdots (*_2)$$

and

$$||f||_b^{(p_2)} \ge e^{p_2(t_0)} \int |\hat{g}(t)| e^{-p_2(-t)} dt \ge e^{p_2(t_0)} \delta ||g||_1^{(p_2)} \cdots (*_3)$$

for some $\delta > 0$. Hence, from $(*_1), (*_2)$ and $(*_3)$, we have

$$e^{p_2(t_0)}\delta||g||_1^{(p_2)} \le \frac{1}{h'}e^{bp_1(t_0)}||g||_b^{(p_1)}$$
 and hence

$$|p_2(t_0) + \ln \delta ||g||_1^{(p_2)} \le bp_1(t_0) + \ln \frac{||g||_b^{(p_1)}}{b'}.$$

Hence we derive $p_2 \prec p_1$ with $a = \ln \frac{||g||_b^{(p_1)}}{b'} - \ln \delta ||g||_1^{(p_2)}$.

COROLLARY 2.3. Let $p \in \mathcal{M}_0(n)$. Then $\check{p} \in \mathcal{M}_0(n)$, where $\check{p}(x) = p(-x)$. $\check{p} \prec p$ if and only if $p \prec \check{p}$

COROLLARY 2.4. Let $p \in \mathcal{M}_0(n)$. Then $\mathcal{D}_p(\Omega) \subset \mathcal{D}(\Omega)$ for every open Ω in \mathbb{R}^n (or for some non-trivial Ω) if and only if $p_0 \prec p$, where $p_0(x) = \ln(1+|x|)$ $(x \in \mathbb{R}^n)$.

DEFINITION 2.5. ([2], Def 1.3.22) Let $\mathcal{M} = \{p \in \mathcal{M}_0(n); p \text{ satisfy condition } (\gamma)\}$:

$$(\gamma)$$
 $p_0 \prec p$ where $p_0(x) = \ln(1+|x|)$ $(x \in \mathbb{R}^n)$.

The translation operators τ_x are defined by $(\tau_x)f(y) = f(y-x)$ $(x, y \in \mathbb{R}^n)$.

THEOREM 2.6. Let $p \in \mathcal{M}_0(n)$ and let $x \in \mathbb{R}^n$ be given. Then the mapping T_x from \mathcal{D}_p into \mathcal{D}_p defined by $T_x(f) = \tau_x f$ $(f \in \mathcal{D}_p)$ is continuous and in fact an isometry.

Proof. Since $(\tau_x \hat{f}) = e_{-x} \hat{f}$, we have

$$||T_x(f)||_{\lambda}^{(p)} = ||\tau_x f||_{\lambda}^{(p)} = \int |e_{-x}\hat{f}|e^{\lambda p(t)}dt = ||f||_{\lambda}^{(p)}.$$

THEOREM 2.7. Let $p \in \mathcal{M}_0(n)$ and let $x \in \mathbb{R}^n$ be given. Then the mapping F_x from \mathcal{D}_p into \mathcal{D}_p defined by $F_x(f) = e_x f$ $(f \in \mathcal{D}_p)$ is linear and continuous.

Proof. Since
$$(e_x \hat{f}) = \tau_x \hat{f}$$
, $||e_x f||_{\lambda}^{(p)} \leq e^{\lambda p(x)} ||f||_{\lambda}^{(p)}$.

THEOREM 2.8. Let $p \in \mathcal{M}$. If P is a polynomial and $g \in \mathcal{D}_p$, then each of the three mappings

$$F_g: f \to fg, \quad F_{*g}: f \to f * g, \quad P(D): f \to P(D)f$$

is a continuous linear mapping of \mathcal{D}_p into \mathcal{D}_p .

Proof. Since $(fg) = \hat{f} * \hat{g}$, $||fg||_{\lambda}^{(p)} \le ||f||_{\lambda}^{(p)}||g||_{\lambda}^{(p)}$. Hence, F_g is continuous. Since $(f * g) = \hat{f}\hat{g}$, $||f * g||_{\lambda}^{(p)} \le ||\hat{g}||_{\infty}||f||_{\lambda}^{(p)} \le ||g||_{L^1}||f||_{\lambda}^{(p)}$. Therefore, F_{*g} is continuous. Finally, since $(P(D)f) = P\hat{f}$, and since $|P(t)| \le C\exp Ip(\xi)$ for some I > 0, and constant C, we have

$$||P(D)f||_{\lambda}^{(p)} = \int |P(t)\hat{f}(t)|e^{\lambda p(t)}dt$$

$$\leq C \int |\hat{f}(t)|e^{(\lambda+I)p(t)}dt$$

$$= C||f||_{\lambda+I}^{(p)}.$$

Hence, P(D) is continuous.

3. The spaces \mathcal{D}'_{p} and continuity

We recall that $\check{p}(\xi) = p(-\xi)$ and note that if $p \in \mathcal{M}$, then $\check{p} \in \mathcal{M}$. The dual space \mathcal{D}'_p of the space \mathcal{D}_p is given the weak topology, that is the topology given by the system of semi-norms $\{||\cdot||_{\phi} : ||u||_{\phi} = |u(\phi)|, \quad \phi \in \mathcal{D}_p\}$.

DEFINITION 3.1. $\mathcal{E}_p(\Omega)$ is the set of all complex-valued functions ϕ in Ω such that if $\psi \in \mathcal{D}_p(\Omega)$, then $\psi \phi \in \mathcal{D}_p(\Omega)$. The topology in $\mathcal{E}_p(\Omega)$ is given by the semi-norms $||\cdot||_{\lambda,\psi}$ defined by $||\phi||_{\lambda,\psi} = ||\psi\phi||_{\lambda}^{(p)}$ $(\forall \lambda > 0, \forall \psi \in \mathcal{D}_p(\Omega))$.

DEFINITION 3.2. ([2], Def 1.6.8) $\mathcal{D}'_{p,F}(\Omega)$ is the set of all $u \in \mathcal{D}'_p(\Omega)$ with the property that $\lambda > 0$ can be chosen so that for each compact $K \subset \Omega$ there exists C such that $|u(\phi)| \leq C||\phi||_{\lambda}^{(p)}$ $(\forall \phi \in \mathcal{D}_p(K))$.

DEFINITION 3.3. ([2], Def 1.8.10) Let $p \in \mathcal{M}$. We denote by \mathcal{F}_p the set of all elements $u \in \mathcal{D}_p'$ such that for some measurable function U with $\int |U(\xi)|e^{-\lambda p(\xi)}d\xi < \infty$ for some $\lambda > 0$ we have $u(\phi) = \int U(\xi)\hat{\phi}(-\xi)d\xi$ ($\forall \phi \in \mathcal{D}_p$).

We have the inclusion relations:

$$\mathcal{E}_p'(\Omega) \subset \mathcal{D}_{p,F}'(\Omega) \subset \mathcal{D}_p'(\Omega); \mathcal{E}_p' \subset \mathcal{F}_p.$$

If p and $p^* \in \mathcal{M}$ and $p^* \prec p$, then $\mathcal{D}' \subset \mathcal{D}'_{p^*} \subset \mathcal{D}'_p$ algebraically and topologically.

We define $\tau_x u$ of $u \in \mathcal{D}'_p$ by $(\tau_x u)(\phi) = u(\tau_{-x}\phi)$ $(\phi \in \mathcal{D}_p, x \in \mathbb{R}^n)$. Then, for each $x \in \mathbb{R}^n, \tau_x u \in \mathcal{D}'_p$.

DEFINITION 3.4. A mapping $T: \mathcal{D}'_p \to \mathcal{D}'_p$ is isometry if for every $\phi \in \mathcal{D}_p$ there exists $\psi \in \mathcal{D}_p$ such that for every $u, v \in \mathcal{D}'_p$

$$||T(u) - T(v)||_{\phi} = ||u - v||_{\psi}.$$

THEOREM 3.5. Let $p \in \mathcal{M}$ and let $x \in \mathbb{R}^n$ be given. Then the mapping $T_x : \mathcal{D}'_p \to \mathcal{D}'_p$ defined by $T_x(u) = \tau_x u$ is an isometry.

Proof. $||T_x(u)||_{\phi} = |(\tau_x u)(\phi)| = |u(\tau_{-x}\phi)| = ||u||_{\phi_x}$, where $\phi_x(y) = \phi(x+y)$.

THEOREM 3.6. Let $p \in \mathcal{M}$ and let $x \in \mathbb{R}^n$ be given. Then the mapping $F_x : \mathcal{D}'_p \to \mathcal{D}'_p$ defined by $F_x(u) = e_x u$ is an isometry, where $(e_x u)(\phi) = u(e_x \phi)$ and $(e_x \phi)(y) = e^{ixy}\phi(y)$.

Proof.

$$||F_x(u)||_{\phi} = ||e_x u||_{\phi} = |(e_x u)(\phi)| = ||u||_{e_x \phi}.$$

We define, for $\phi \in \mathcal{D}_p$ and $u \in \mathcal{D}'_p$, $(\phi * u)(\psi) = u(\check{\phi} * \psi) \quad (\forall \psi \in \mathcal{D}_p)$, then $\phi * u \in \mathcal{D}'_p$.

THEOREM 3.7. Let $p \in \mathcal{M}$. If P is a polynomial and $g \in \mathcal{D}_p$, then each of the three mappings

- (1) $F_q: \mathcal{D}'_p \to \mathcal{D}'_p$ by $F_q(u) = gu$
- (2) $F_{*q}: \mathcal{D}'_{p} \to \mathcal{D}'_{p}$ by $F_{*q}(u) = g * u$
- (3) $P(D): \mathcal{D}'_{p} \to \mathcal{D}'_{p}$ by P(D)(u) = P(D)u

is continuous and linear.

Proof. (1) $||F_g(u)||_{\phi} = ||gu||_{\phi} = |u(gu)| = ||u||_{g\phi}$, where $(gu)(\phi) = u(g\phi) = u(g\phi) \quad (\phi \in \mathcal{D}_p)$. Hence, F_g is an isometry.

(2) $||F_{*g}(u)||_{\psi} = ||g * u||_{\psi} = |u(\tilde{g} * \psi)| = ||u||_{\tilde{g} * \psi}$. Hence, F_{*g} is an isometry.

(3) Let
$$P(D) = \sum_{|\alpha| \le m} C_{\alpha} D_{\alpha} = \sum_{|\alpha| \le m} C_{\alpha} (-i)^{-|\alpha|} D^{\alpha}$$
.

$$\begin{split} ||P(D)u||_{\psi} &= |(P(D)u)(\psi)| = \Big| \sum_{|\alpha| \le m} C_{\alpha} u(D^{\alpha} \phi) \Big| \\ &\le \sum_{|\alpha| \le m} |C_{\alpha} u(D^{\alpha} \psi)| \\ &\le \max_{|\alpha| \le m} |C_{\alpha}| \sum_{|\alpha| \le m} |u(D^{\alpha} \psi)| \\ &\le C||u||_{D^{\alpha} \psi} \end{split}$$

for some α with $|\alpha| \leq m$ and constant C.

References

- Hörmander, L., Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften 116, Springer Berlin, 1963.
- Göran Björck, Linear Partial Differential Operators and generalized distributions, Ark. Math. Band 6 nr 21, 1966.
- 3. Rudin, W., Functional Analysis, McGraw-Hill, Inc., 1991.

Department of Mathematics Pusan National University Pusan 609-735, Korea