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CONTINUITY OF THE OPERATORS ON THE
SPACES D, AND AND THE DUAL SPACES D,

YOoUNG Sik PARK

0. Introduction

First we recall some properties of the spaces D, and study the con-
tinuity of the operators on D,. We also consider the continuity of the
operations on the dual spaces D, with the weak topology.

1. Definitions and notations

The normalized Lebesgue measure on R™ is the measure m, defined
by dmn(z) = (27)~"/2dz. The usual Lebesgue spaces L?, or LP(R"),
will be normed by means of m,,:

1/p
1l ={ [ Arpama} " G sp<oo)
For each t € R", the character e, is the function defined by
e(z) = e =exp{i(tiz; + - + tnzn)} (xr € R™).

The Fourier transform of the function f € L'(R") is the function f
defined by

ft) = /R feudm,  (t€RM).

If « is a multi-index, then

D, = (i) l*lp~ = (l..é_)al 10 )a"_

1 Oz .t OTq
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If P is a polynomial of n variables, with complex coefficients, say

P(€) =Y Cat™ =Y Coti™ €27,

the differential operators P(D) and P(—D) are defined by
P(D)=) C4Da, P(-D)=>)» (~1)I*ICeDa.

The relation S; @ S, shall mean that the closure of S; is compact and
contained in the interior of S;. If {5;}52, is a sequence of sets, the
relation S; '/ S shall mean that S; € S;41(j = 1,2,---) and that
S = US;. Let p be a real-valued function on R", continuous at the
origin and having the property

(a)  0=p(0)=limp(x) < p(€+m) <p()+p(n) ("&n€R).

DEFINITION 1.1. Let Mo = Mo(n) be the set of all continuous real-
valued functions p on R" satisfying the conditions (@) and

B) ()= /W |§|(31d£<oo.

DEFINITION 1.2. Let p satisfy (a). If ¢ € L'(R™) and if A is a real
number, we write

l6lls = 11619 = [ 16(6)1e O e

Let D, be the set of all ¢ in L'(R™) such that ¢ has compact support
and {|¢||]x < oo for all A > 0. The elements of D, will be called test

functions.

DEFINITION 1.3. Let p; and p2 be the elements in Mg(n). If for
some real a and positive b we have pa(€) < a+bpi(§) (Y€ € R™). Then
p2 is said to be dominated by p; with some constant translation. We
denote this by pz < p1.
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DEFINITION 1.4. If K is a compact subset of R", Dp(K) = {¢ €
D,; supp ¢ C K}. Note that the space D,(K) is a Fréchet space under
the natural linear structure and the seminorms || - |[|m (m =1,2,---).

DEFINITION 1.5. If © is an open subset of R™ and if K, ,/*/ Q we
define Dp(§2) as the inductive limit of the Fréchet spaces D,p(K,), i.e.,
D, () = indlimg, en Dp(K,).

DEFINITION 1.6. Let M = {p € My(n) : p satisfy condition ()} :

(7) po <p, where po(z)=In(l+|z|) (z € R™).

2. The spaces D, and continuity

PROPOSITION 2.1. py < p; if and only if there are some real a and
positive b such that a + bpy(z) < pi(z) for all 2 € R™.

Proof. Tt is obvious

THEOREM 2.2. ([2] Thm.1.3.18) If p, < pi, then D,, C D,, and
Dy, () is dense in D,,() for each open  C R"™. Conversely, if for

some compact K C R™ with K # ¢,D,,(K) C Dp,(K), then p; < p;.

Proof. For some real a and positive b, we have p2(z) < a+bpi(z)(z €
R™) and hence

AP < XelIfI8) <00 (f €Dy,

Hence Dy, C Dp,. Let u € Dy, () and let u, = u x fo with f € D,: (),
where f.(z) = e " f(z/e) and p, (z) = supj¢|<(z|P1(£). Then u, € Dy ()

and lim._,g ||u — uf||f\p2) =0.

To prove the converse, choose &' C R™ compact with K # ¢ such that
Dy, (K) C Dp,(K). The inclusion map of Dy, (K) into D,,(K) is closed
and hence continuous by the closed graph theorem. Therefore, for some
positive constants b and b’ we have

VAP <NAIPY (FeDp(K)) (1),
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Let ty € R™ and g be a nontrivial element in D,, (K') and define f = gey,.
Then f(t) = §(t — to). We get

AP < Pt gl ()

and
A7 2 ) [lgole0ae > P gl (sa)
for some 6 > 0. Hence, from (*;), (*2) and (*3), we have
1
e”““é”g”ﬁm) < Feb”‘(t")Hgng‘) and hence

(p1)
pa(to) + 1n 6|g]|? < bp1(to) + In llgl(lf’ ‘

(r1)
Hence we derive p; < p; with a = ln%&'—— —1n 5||g|f§p2).

COROLLARY 2.3. Let p € My(n). Then p € My(n), where p(z) =
p(—z). p<pifandonlyifp<p

COROLLARY 2.4. Let p € Mo(n). Then Dp(Q) C D(N) for every
open Q in R™ (or for some non-trivial ) if and only if po < p, where
po(z) =In(1+|2|) (= € R").

DEFINITION 2.5. ([2], Def 1.3.22) Let M = {p € My(n);p satify
condition ()} :

(v) po <p where po(z)=In(l+|z|) (z € R").
The translation operators 7, are drfined by (7;)f(y) == f(y—z) (z,y €
R™).

THEOREM 2.6. Let p € Mo(n) and let z € R™ be given. Then the
mapping T, from D, into D, defined by T,(f) = 1.f (f € Dp) is

continuous and in fact an isometry.

Proof. Since (Trfj = e_,:f, we have

TN = |Im AP = / le—z fle*Ddt = || £1|$P.
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THEOREM 2.7. Let p € Mq(n) and let z € R™ be given. Then the
mapping F; from D, into D, defined by F,(f) = e.f (f € D,) is linear
and continuous.

Proof. Since (exfj = Tzf, ||8zf”E\p) < C'\p(x)“f”&p)'

THEOREM 2.8. Let p € M. If P is a polynomial and g € D,, then
each of the three mappings

Fo:f—fg, Fug:f—fxg, P(D):f— P(D)f

is a continuous linear mapping of D, into D,.

Proof. Since (fg) = f*@,”fg”f\p) < ||f||E\p)Hg||E\p). Hence, F, is con-

tinuous. Since (£ + ¢) = £, IIf * gll” < I1allwllFIF < lgllos AU,
Therefore, F,, is continuous. Finally, since (P(D)f) = Pf, and since
|P(t)] < CexplIp(€) for some I > 0, and constant C, we hawe

IP(D)|® = / P(1)f ()X D
<c / F(B)]eM+DPO 4t
= ClIfIE,.

Hence, P(D) is continuous.

3. The spaces D, and continuity

We recall that p({) = p(—£) and note that if p € M, then p € M.
The dual space D, of the space D, is given the weak topology, that is the
topology given by the system of semi-norms {||-|l4 : ||ulls = [u(¢)], &€
D,}.

DEFINITION 3.1. &,(Q2) is the set of all complex-valued functions ¢
in {2 such that if ¥ € D,(Q2), then ¢¢ € D,p(Q). The topology in &,() is
given by the semi-norms ||- || 4 defined by ||¢||x 4 = ||¢¢||£\p) ("X >
0,"% € Dp(R)).
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DEFINITION 3.2. ([2], Def 1.6.8) D, £(Q) is the set of all u € D,()
with the property that A > 0 can be chosen so that for each compact
K C 9 there exists C such that |u(¢)] < C||¢||P (¢ € D,(K)).

DEFINITION 3.3. ([2], Def 1.8.10) Let p € M. We denote by %,
the set of all elements u ¢ DI’D such that for some measurable func-

tion thith f]U(f”e—/\p(&)dg < oo for some A > 0 we have u(g) =
JUOS(-6)dE (Y6 € D,).

We have the inclusion relations :
E;,(Q) C D;’),F(‘Q) C D;,(Q);S,', C Fp.

If pand p* € M and p* < p, then D' C D,. C D, algebraically and
topologically.

We define 7;u of u € D), by (r,u)(¢) = w(7-2¢) (¢ € Dp,z € R").
Then, for each ¢ € R™, 7,u € D,.

DEFINITION 3.4. A mapping T : D, — D, is isometry if for every
¢ € D, there exists ¢ € D, such that for every u,v € D;)

IT(w) = T(0)llp = [lu = vl|y.

THEOREM 3.5. Let p € M and let © € R™ be given. Then the
mapping T; : D, — D, defined by T (u) = 7,u is an isometry.

Proof. || Te(u)llg = [(rzu)($)] = [u(7-28)| = ||ulls,, where ¢.(y) =
é(z +y).

THEOREM 3.6. Let p € M and let © € R™ be given. Then the
mapping F; : D, — D, defined by 'Fz(u) = eyu is an isometry, where
(ezu)(4) = u(es4) and (e:8)(y) = e"*¥g(y).

Proof.

12 (w)lls = llezulls = l(ezu)($)] = [lulle, o-

We define, for ¢ € Dy and u € Dy, (¢ » u)(yp) = u(¢ +v) (¢ € D,),
then ¢ xu € D,.
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THEOREM 3.7. Let p € M. If P is a polynomial and g € Dy, then
each of the three mappings
(1) Fy: Dy, — D, by Fy(u) = gu
(2) Fog : D, = D, by Fug(u) =gxu
(3) P(D):D, — D, by P(D)(u) = P(D)u

1s continuous and linear.

Proof. (1) ||Fy(u)lls = |lgulls = [u(gu)| = [[u|lgs, where (gu)(¢) =
u(g¢) = u(gé) (¢ € D,). Hence, F, is an isometry.

() [IFxg(Wlly = llg * ully = Ju(g * ¥)| = ||ullgey. Hence, Fy is an
isometry.

(3) Let P(D) = E|O’|Sm CaDa = ZIO’IS"’ Ca(—i)_lalDa.

IP(DYulls = [(PDY)$) = | 3. Cau(D)|

laf<m
< 3 [Cau(Dy)|
laj<m
< maX|q|<m|Cal Z lu(D*)|
le]<m
< Cllul|pay

for some a with |a] < m and constant C.
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