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IDEMPOTENT ELEMENTS IN THE
LOTKA-VOLTERRA ALGEBRA

Suk IM YooN

1. Introduction

The notion of our non-associative algebra is obtained from the Lotka-
Volterra system of differential equation describing competition between
animals or vegetals species and also in the kinetic theory of gasses.

For the struture of an algebra, the existence of idempotents is of
particular interest.

But also from the biological aspect the existence of such elements is
of interest because the equilibria of a population which can be deseribed
by an algebra correspond to idempotents of this algebra.

Thus we present some properties of the general natures for a Lotka-
Volterra algebra associated to a weight function and idempotents ele-
ments.

2. Preliminary results

The Lotka-Volerra system with binary interaction treated by Kimura
[4] and Mather [7] is represented by L 2i(t) = 24(t) D= aij zi(t), (i=
1,2,--- ,n) where z; are differentiable functions of time variable ¢ and
for & > to with z,(t0) > 0 (i = 1,2,--- ,n), Sy zi(te) = 1 and the
real constants a;; satisfies a;; + aj; = 0 for any ¢ and j.

It is known [2] that the structure of constants permit us to associate
this system of differential equation to a commutative, nonassociative
n-dimensional algebra over R.

Hereafter, we shall consider such algebras over a commutative field of
characteristic not 2. Let K be a commutative field of characteristic not
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2, and (a;;) an n X n antisymmetric matrix with coefficients in K where
n > 2 is an integer and A a vector space over K of dimension n with a
basis {e1,€2, - ,€,}. On A, consider an algebraic structure defined by
the multiplication e;e; = (% + aij) e; + (% — aij) e; (1,7 =1,2,---.,n)
where a;; = —aj; and —% < ag; < % From definition, we easily see
that e;e; = eje;, e? = ¢; and ei(ejex) # (eiejleg for 1,5,k =1,2,--- ., n.
We call this commutative, nonassociative algebra as the Lotka-Volterra
algebra associated to the antisymmetric matrix (a;;).

LEMMA 1. Let K be a field of characteristic not 2 and A the Lotka-
Volterra K -algebra associated to antisymmetric matrix (a;;). Then A is
a baric algebra. [cf. 13]

Proof. Let w: A — K be a K-linear application defined by w(e;;) =
1 (i =1,2,---,n), it is easy to show that w is a K-algebra morphism,
that is, w(zy) = w(z)w(y) for all z and y in A.

Forany ¢ = S0, Aie; and y = S, pie; with K we have the mul-
tiplication zy = H(w(z)y + w(y)x) + Y1 (Aiwi(y) - pawi(z))e;, where
w;: A—> K, e;—a;; (1,7 =1,---,n)are K-linear applications.

In particular, if all a;; are zero, we have the multiplication zy =
2(w(z)y +w(y)z), that is the multiplication in gametic algebra G(n,2),
where w is the weight function.

REMARK. Gametic algebra G(n,2) is Gonshor genetic (cf [13]). This

means that there exists a base (u;,uq, - ,un) of A over K such that the
multiplication table of A related to this base is u;u; = 3 p_; Yijk Uk (1,7
=1,---,n), where v, satisfy the conditions y111 =0, yijr =0if k <

and ;% = 0 if ¥ <max(i,5) with7 > 2 and j > 2.

PROPOSITION 2. Let A be a Lotka-Volterra K -algebra associated to
an X n antisymmetric matrix (a;;).

For any extension K — L of K, the L-algebra A Qx L is also Lotka-
Volterra algebra associated to the same matrix (a;;) that admits a weight
function. i.e., A ®y L is also a baric algebra

Proof. If {e;,e2, - ,en} is a base of A with which we define the
multiplication table e;e; = (% + a,-]-) e; + (% — a,-j) ¢j in A, then {e1 ®
1, e2@1,---, e, @1} is a base of A @ L as an L-algebra and the

constants of the multiplication structure of A @ i L related to this base
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{e1®1, e2®1,---, e, ® 1} are the same as that of A related to the
base {e1,€e2, - ,en}. We consider w' = w ® tdy, of A ®k L such that
w'(e; ®1) = w(e;)1 = 1 as a weight function of Lotka-Volterra L-algebra
AQg L.

REMARK. Since the Lotka-Volterra K-algebra (A, w) is a gametic al-
gebra G(n,2) when all g;; are 0 and the weight function of G(n,2) is
unique (cf. [13]), there exists unique weight function w in a Lokta-
Volterra algebra A when all entries are 0 in the associated matrix (a;;).

In general, it is interesting to consider the condition for the uniqueness
of weight function of the Lotka-Volterra algebra. We have the following
results.

PROPOSITION 3. Let A be a Lotka-Volterra algebra with weight func-
tion w. If ker w is nil, then w is uniquely determined.

Proof. Let @ : K — L be any non-trivial homomorphism and = €
ker w. Then there is an n € N with ™ = 0.
Since a is a homomorphism from A into K, it follows a(z) = 0. Let

z € A/ker w, then w(z) # 0. So we have w (w( 5 - ) =0, and .1;% -

z € ker w. It implies that o (;’é—) — JJ) =0, so we have « (#ﬁ) — 1) =
0.

Therefore, we have either a(z) = 0 or a(z) = w(z). Since we have
assume that « is nontrivial, we must have o = w.

If a;; # —l for all ¢ and 7 (4,5 = 1,2,--- .n), then w is uniquely
determined in the Lotka-Volterra K- algebra cf. [9]). In fact e = e;
implies that w'(e;)? = w'(e;), and so w'(e;) = 0 or w'(e;) = 1.

Let I = {¢|w'(e;) = 1} and J = {i|w'(ei) = 0}. Since w is nontrivial,
I'#0. Foranyi € I and j € J, by applying v’ to e;e; = (1+2a1])e,

(1 + 2a],)e] we have 1 + 2a;; = 0, that is 1mp0551ble by hypothesxs 80
=0 and w'(e;) = 1. Consequently, w=w'

We have an example of the Lotka-Volterra algebra which does not
have the unique weight function for some a; ; that are + %

o
jemN SlEg

EXAMPLE. Consider the 3x3 anti-symmetric inatrix

eIy o
O o]

|
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By the multiplication table of the Lotka- Volterra algebra associated with
this matrix, we have e% = €1, €169 = €1, €1€3 = €], e% = eg, €gez =
1(141)e2 +3(1 —1)es, € = e3 and K-algebra application w' : K — L
defined by w'(e1) = 0, w'(ez) = 1 and w'(e3) = 1. That is different from
w(e;) =1fori=1,2,3.

The Proposition 3 and Remark permit us to say the following prop-
erty.

PROPOSITION 4. If either ai; # —-% for all 1 and j or ker w is nil,
then there exist unique weight funtion w' in the Lotka- Volterra L-algebra
A QK L for any extension K — L of K.

Proof. Since A and A ®x L have the same related matrix and the
weight function w’ of A®x L which is defined by w i1 the Lotka-Volterra
K-algebra A, we have the unique weight function in A ®x L as an L-
algebra.

3. Idempotent elements of the Lotka-Volterra algebra

PROPOSITION 5. Let (A,w) be a Lotka-Volterra baric algebra and if
ker w is nil. Then w(e) = 1 for every idempotent element € of A.

Proof. For every idempotent e of a Lokta-Volterra algebra A, we have
either w(e) = 0 or w(e) = 1. In a Lokta-Volterra algebra A all elements
of weight 0 are nilpotent by hypothesis and an iderapotent can not be
nilpotent. Thus we have w(e) = 1.

Let M = ker w, then A/ = K. Thus A/M is a 1-dimensional
associative algebra with unity and not nilpotent. Therefore there exist
a Levi decomposition of A with respect to N, i.e. A is the direct sum of
the vector spaces B and I where B is a subalgebra of 4 isomorphic to
A/M.

It follows immediately that A = Ke & Ker w for any nontrivial
idempotent element e of A, and hence for any z of A written by z =
w(z)e+y with w(y) = 0, a nontrivial idempotent element can be written
by z = e +y with w(y) = 0 by the condition w(z)? = w(z).

Now, generally we study the idempotent elements of the (genetic)
Lotka-Volterra algebra A. At first we restrict ourselves for the case of
n=2. Let z = x1e; +z2e0 and y = y1e1 + y2e2 be element in A, where
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T1,Z2,y1 and y; are in K. If we consider the identity zy = z for all
z,y € A, we have the (right) identity element

Y= ! [(—1' - alz)l'le] + (-1' - 021)1?262]
(% —012) 1 + (% —021)932 2 2

2

in A. Furthermore, if we replace y by z, i.e. 22 = z, for z € A, then we
have z = 3 alu [—e1+¢€2] as a nonzero idempotent element in A. However,
if we consider the homogeneous case of the last equation, we can easily
see that there is no nonzero nilpotent elements in 4. So, we can say
that there is no nonzero nilpotent elements, but there does exist nonzero

idempotent elements in A for the case of dim A == 2. Furthermore, using

aj; = —aj;, we can see that there are 4 idempotent elements in A. ie.,
1 1 1
T=——(—e1+e er —ez), —(—ey +ez), —(e1 —e2
2012( )’ 20,12( )7 012( )3 012( )
For the general case, let {e1,€e2, -+ ,€,} be a canonical basis of A. Then

from the multiplication
1 1
ei€; =(§ + aij)ei + 51 —aji)ej, aij +aji =0,

1 1
—Esaijg'é" i,j:]-»z’"'an’

we have
n 2 n
(Z x.-e,') = Zx?e? +2 Z TiTjeie;
i=1 i=1 1<i<j<n
= 1 1
= Zx?e,’-f-z Z zix; (—+a,~j)e,~+ (——-a,-j)ej
; st 2 2
=1 1<i<j<n
where

= 1 1
T = .'L'i +2Z:L'k$j(§ +akj) +22x,-:1:k(-2— ——a,’k)

ik ik

= 1 1
-'L'i + ZZ:cka:j (5 + akj) + QZ TiTk ('é‘ + ak:’)
J#k j#k
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=z + 2Z:ckmj(1 + 2ay;).
J#£k

To consider the idempotent elements in the Lotka-Volterra algebra A, it
suffices to consider only for zx(zx + 22;;,‘ zj(1+4+ 2ax;)—1) =0.

Since the left side of the above equation must be in K, zx = 0 or
T + 22;;&1: a:j(l + 2ak]-) —-1=0.

Let P : zx = 0 and Qx : zx + 22#,0(1 + 2ax;)z; — 1 = 0. If we
consider {iy,---,%,} and {j1, - ,jn—p}, then we see that

Uy, Lip)EP(1,2,- ,n)(Pz‘1 Nn---N P;'p N le N---N Q]‘"_p)

becomes an ideal of A ([1]). So we can write PiN---NP,NQp41MN---NQn
asz1 =0, 22 =0, y2p =0, ((:EP“H + 2ZJ>p+l(] +2aP+1j)‘Tj = 1))7

and it is associated to an antisymmetric matrix

C 0 - e oo e 0 ]
0
A= .
. p+1
o« T
o1 e .
Therefore, we can consider only for Z?=p+l(1 +2ap+1,5)z; = 1 which is
1 1 - 1
reduced to a matrix form as (E+2A)z = | : |, where E = | .
1 1 - 1

So, for the general case, consider a matrix form tE + A, where ¢ is
an indetermined variable. Then since det(tE + A) = P(t) = at + 8 and
rank (E) = 1 for the case which n is even and t = 0, there exists a basis
{e1,€2, - ,eam} and we can reduce A to

(%)
A =

(—?1 10)
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such that A = RT AR for some nonsingular matrix R € M2, x2m-
Let a = &[det(tE + A)]i=o.

To differentiate the matrix

t t—ayp - t—ain
t+ ajs t coo t—azg
t+ain t4+az, --- t
consider j‘;det(vl,--- ,On) = S pdet(vy, -+, Lvk, -+ ,vn) where vk
1
=vo = | : | and v; = tvy + ¢;, where ¢; is the :th column vector.
1
Since
d
det(vy,--- SN ,Un) = det(tvg+c1, -+ ,tvo +Cr=1,%0, - ,tvg+Cp)

and tvg = 0, we have

d d
’d—tP(t) = Q—t-det(vl,--- ,’Un) = Xk:det(cl,--- sy Cha1,V0yCk41,y"" " ,Cn).

Hence, if n is even, {c1,c2, - ,cn} is a linearly independent set. So,
vo = 3.1, @ici and £ P(t) =Y, ax(det 4) = 0.
a) g 1
Sincevo=A| ' | implies | : | =A7'vp=A"" || and 47! =
Qn p 1
(ai;), we have a; + - -+ + an = Zi’j a;; = 0.

So we have 1 = det A = (det A)?’det A and 8 = (PfA)? = det A
where PfA is the genetic Phaffian of size n [5]. i.e., if n is even, then
det(tE+A) = (PfA)? which is a Cramer’s form and then we can say that
there always exists the idempotent elements in an (even) n-dimensional
Lotka-Volterra algebra A.

On the other hand, if n is odd and ¢t = 0, then we have 8 = det A = 0.

, 2
So det(tE + A) = (E?zl(—l)'PfA,-) , which is a nonzero polynomial.
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Since
1
det C1 " Ck—1 Ck+l"'cn :(‘1)k+] det.Alk,
1
d it
EP(t) = Zdet(cl,- *t  Ck=1,0V0,Ck41, " ,Cn) = Z(—~1) T det A;j.
k 1

By letting det A;; = det A;, we can see that det 4; == (PfA;)?%.
. 2
Hence det(tE + A) = (Z:’zl(—l)’PfA,-) if 7 is odd.

Therefore, we have the following result ;

THEOREM 6. In a(genetic) Lotka-Volterra algebra A, the idempotent
elements in A are as following :

i) T = (Z1)Pf4, 5 if n Is odd,

| Sin(-DkPf A
_ 2(=1)PfA,
= PfA

if n 1is even.

COROLLARY 7. In a (genetic) Lotka-Volterra algebra A, there exists
exactly 2" idempotent elements.

References

- Broubark: N., Algébre, chapitres 1 4 3 Hermann, Paris, 1961.

-Itoh Y, Non-associative algebra and Lotka- Volterra equation with ternary in-
teraction, Nonlinear analysis, Theory, Methods & Applications 5 (1981), 53-56
Pergamon Press Ltd.

3. Kalplan J. L. and Yorke J. A., Non-associative, real algebras and quadratic dif-

ferential equation, Nonlinear analysis TMA 3 (1979), 49-51.
4. Kimura M., On the change of population fitness by natural selection, Heredity
12 (1958), 145-167.

5. Lang S., Algebra, Addison-Weley publ. Co., London, 1965

6. Markus L., Quadratic differential equations and non-associative algebras, Con-

trbutions to the theory of Nonlinear oscillations (Edited by L. Cesari, J. Lasalle

and S. Lefschetz), (1960), 185-213 Princetion university Press.

[ =



e

10.
11.

12.

13.

Idempotent elements in the Lotka-Volterra algebra 131

. Mather K., Selection through competition, Heredity 24 (1969), 529-540.
. Merris R., Multilinear algebra, California state university, Hayward, 1974.
. Micali A. and Koulibaly A., Les algébres de Lotka- Volterra, Travaux en cours-Al

gébres Génétiques (Edités par A. Micali), Hermann, Paris, 1986.

Mostowski and Stark, Introduction to higher algebra, Warzawa, 1964.

Rohrl H. and Wischneewsky M. B., Subalgebra that are cyclic as submodules,
Mannuscr. Math. 19 (1976), 195-209.

Schafer R. D., An introduction to non associative algebras, Academic Press N.
Y., 1966.

Worz-Busekros A., Algebras in genetics, Lecture notes in Biomathematics; 36
Springler, Berlin.

Department of Mathematics
Duksung Women’s University
Seoul 132-714, Korea



