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WEAK COMPATIBLE MAPPINGS OF TYPE (4) AND
COMMON FIXED POINTS IN MENGER SPACES

H. K. PATHAK, S. M. KANG AND J. H. BAEK

1. Introduction

The notion of probabilistic metric spaces (or statistical metric spaces)
was introduced and studied by Menger [19] which is a generalization
of metric space, and the study of these spaces was expanded rapidly
with the pioneering works of Schweizer-Sklar [25]-[26]. The theory of
probabilistic metric spaces is of fundamental importance in probabilistic
function analysis. For the detailed discussions of these spaces and their
applications, we refer to [9], [10], [28], [30]-[32], (36] and [39)].

Recently, some fixed point theorems in probabilistic metric spaces
have been proved by many authors; Bharucha-Reid [1], Bocsan [2],
Chang [5], Ciri¢ [7], Hadz¢ [11)-[13], Hicks [14], Singh-Pant [33]-[35],
Stojakovi¢ [37]-[39], Tan [40] and many others ((3], [4], [8], [14], [20] and
[42]), and also, some fixed point theorems in Menger spaces have been
proved by many authors; Cho-Murthy-Stojakovié [6], Dedeic-Sarapa [8],
Radu [22]-[24], Stojakovi¢ [37]-[39] and others.

Note that every metric space is a probabilistic metric space and hence
we can use many results in probabilistic metric spaces to prove some fixed
point theorems in metric spaces and Banach spaces.

Recently, Jungck [15] generalized the Banach contraction principle by
using the concept of compatible mappings on metric spaces. Of course,
any weakly commuting mappings are compatible mappings but the con-
verses are not true.
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The existence of fixed points for compatible mappings on metric spa-
ces and probabilistic metric spaces is shown by Jungck [15]-{17], Mishra
[20] and Sessa-Rhoades-Khan [29].

Quite recently, Jungck-Murthy-Cho [18] and Cho-Murthy-Stojakovi¢
[6] introduced the concept of compatible mappings of type (A) on metric
spaces and Menger spaces respectively, and proved the existence of fixed
points of these mappings in metric and Menger spaces, respectively.

In this paper, we introduce the concept of weak compatible mappings
of type (A) on Menger spaces, which is equivalent to the concepts of
compatible mappings and compatible mappings of type (A) under some
conditions, and prove some common fixed point theorems for weak com-
patible mappings of type (4) on Menger spaces. Our results generalize
and improve results of Cho-Murthy-Stojakovié [6].

2. Preliminaries

Let R denote the set of reals and R the nonnegative reals. A mapping
F : R — RY is called a distribution function if it is nondecreasing left
continuous with inf 7 = 0 and sup F = 1. We will denote £ by the set
of all distribution functions.

A probabilistic metric space (briefly, a PM-space) is a pair (X, F),
where X is a nonempty set and F is a mapping from X x X to £. For
(u,v) € X x X, the distribution function F(u,v) is denoted by Fy ..
The functions F, , are assumed to satisfy the following conditions:

(P1) Fy.(z)=1for every z > 0 if and only if u = v,

(P2) F,,.(0) =0 for every u,v € X,

(P3) Fu.o(z)= F,u(z) for every u,v € X,

(P4) If Fy »(z) =1 and F, »(y) = 1, then Fy w(a +y) = 1 for every

u,v,w € X.

In a metric space (X, d), the metric d induces a mapping 7 : X x X —

L such that
Flu,v)(z) = Fyo(x) = H(z — d(u,v))

for every u,v € X and z € R, where H is a distribution function defined
by
0, r <0

H(x):{L z >0,
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A function t : [0,1] x [0, 1} — [0, 1] is called a T-norm if it satisfies the
following conditions :

(t1) t(a,1) = a for every a € [0, 1] and ¢(0,0} = 0,

(t2) t(a,b) = t(b,a) for every a,b € [0,1],

(t3) If ¢ > a and d > b, then t(c,d) > t(a,b),

(t4) t(t(a,bd),c) = t(a,t(b,c)) for every a,b,c € [0,1].

A Menger space is a triple (X, F, 1), where (X, F) 1s a PM-space and
t is a T-norm with the following condition:

(P5) Fuuw(z +y) > t(Fuu(z), Fyw(y)) for every u,v,w € X and

z,y € R*.

The concept of neighbourhoods in PM-spaces was introduced by Sch-
weizer-Sklar [25]. If u € X, € > 0 and A € (0,1), then an (€, A)-
neighbourhood of u, denoted by Uy (e, A), is defined by

Uu(e,N) = {v € X : Fuo(e) >1—A}.

If (X, F,t) is a Menger space with the continuous T-norm ¢, then the

family
{Uu(e,A):ue X,e> 0,1 € (0,1)}
of neighbourhoods induces a Hausdorff topology on X and if supt(a,a)
a<l

= 1, it is metrizable.

An important T-norm is the T-norm t(a,b) = min{a, b} for all a,b €
[0,1] and this is the unique T-norm such that t(a,a) > a for every
a € [0,1]. Indeed, if it satisfies this condition, we have

min{a, b} < ¢(min{a, b}, min{a,b}) < t(a,b)
< t(min{a,b},1) = min{a, b}.

Therefore, ¢ = min.

In the sequel, we need the following definitions and theorems are well-
known ([23}):

DEFINITION 2.1. Let (X, F,t) be a Menger space. A mapping S from
X into itself is said to be continuous at a point p € X if for every € > 0
and A > 0, there exist ¢ > 0 and A; > 0 such that if ¢ € Up(e1, A1),
then Sq € Us,(e, M), that is, if F}, 4(€1) > 1— Ay, then Fsp sq(€) > 1 —A.
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DEFINITION 2.2. Let (X, F,t) be a Menger space with the continuous
T-normt. A sequence {p,}in X is said to be convergent to a point p € X
if for every € > 0 and A > 0, there exists an integer N = N(¢, A) such
that p, € Up(¢,A) for all n > N, or equivalently, F}, ,.(e) > 1 — A for all
n > N. We write p, — p as n — 00 or limy oo Pn = Pp.

Since the (e, A)-topology on Menger space (X, F,t) satisfies the first
axiom of the countability, we have the following:

THEOREM 2.1. Let (X, F,t) be a Menger space with the continuous
T-normt and S be a mapping from X into itself. Then S is continuous
at a point p if and only if for every sequence {p,} converging to p, the
sequence {Sp,} converges to the point Sp.

THEOREM 2.2. Let (X, F,t) be a Menger space with the continuous
T-norm t. Then F is a lower semi-continuous function of points in X,
that is, for any fixed x € R*, if ¢, — q and p, — p as n — oo, then

lim inf F, , (r)=Fp, (z).

n—oo

DEFINITION 2.3. Let (X, F,t) be a Menger space with the continuous
T-normt. A sequence {p,} of points in X is said to be a Cauchy sequence
if for every € > 0 and A > 0, there exists an integer N = N(¢,A) > 0
such that F, , () >1—Aforallm,n>N.

DEFINITION 2.4. A Menger space (X, F,t) with the continuous T-
norm t is said to be complete if every Cauchy sequence in X converges
to a point in X.

The following theorems establish the relations between metric spaces
and Menger spaces. It is well known that every metric space (X, d)
is a Menger space (X, F,min), where the mapping F; , is defined by
F, ,(€) = H(e — d(z,y)). The space (X, F,min) is called the induced
Menger space.

THEOREM 2.3. Let t be a T-norm defined by t(a,b) = min{a,b}.
Then the induced Menger space (X, F,t) is complete if a metric space
(X, d) is complete.
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THEOREM 2.4. Let (X, F,t) be an induced Menger space by the met-
ric d. Let {pn} be a sequence in X and S be a mapping from X into
itself. Then for every ¢ > 0 and A > 0, F, ,(¢) > 1 — X if and only if
there exists an integer N such that d(pn,p) < € for alln > N, and S
is continuous at p in the sense of the Menger space if and only if S is
continuous at p in the sense of the metric space.

3. Compatible mappings of type (A)

In this section, motivated by the concept of compatible mappings and
compatible mappings of type (A) on metric spaces and PM-spaces ([15],
[6] and [20]), we introduce the concept of weak compatible mappings of
type (A) on Menger spaces. In metric spaces and Menger spaces, the
concepts of compatible mappings and compatible mappings of type (A4)
are equivalent under some conditions ([18] and [6]).

DEFINITION 3.1. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and S, T be mappings from X into itself. S and T
are said to be compatible if

lim Fsry, 75z, () =1
n—00
for all z > 0, whenever {z,} is a sequence in X such that lim, .o Sz, =

limg oo T2n = z for some z € X.

DEFINITION 3.2. Let (X, F,t) be a Menger space such that the 7-
norm ¢ is continuous and S, T be mappings from X into itself. S and T
are said to be compatible of type (A) if

lim FTSzn,SSz"(x) =1 and lim FST:,.,TTzn(fL') =1
n—oco n—o0

for all z > 0, whenever {z,} is a sequence in X such that lim, . Sz, =
limp_ oo T2, = 2 for some z € X.

DEFINITION 3.3. Let (X, F,t) be a Menger space such that the T-
norm ¢t is continuous and S, T be mappings from X into itself. S and T
are said to be weak compatible of type (A) if

lim FST::,,,TT::,.(CE) > lim FTSI,.,TT.’C"(:I:)
n—00 n—oo
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and
lim Frss, ss:,(z) > lim Fsry, 55:,(z)
n-—oo N+ 00

for all > 0, whenever {z,} is a sequence in X such that lim, .o, Sz, =
limp—oo Tz, = z for some z € X.

First, the following Propositions 3.1 and 3.3 show that Definitions 3.1
and 3.2 are equivalent under some conditions ([6}):

PROPOSITION 3.1. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and t(z,z) > z forallz € [0,1}, and $,T: X —» X
be continuous mappings. If S and T are compatible, then they are
compatible of type (A).

PRropPOSITION 3.2. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and t(z,z) > x for all x € [0,1], and let S,T : X —
X be compatible mappings of type (A). If one of S and T is continuous,
then S and T are compatible.

From Propositions 3.1 and 3.2, we have:

ProprosITION 3.3. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and t(z,z) > z forallz € {0,1], and S,T: X — X
be continuous mappings. Then S and T are compatible if and only if
they are compatible of type (A).

REMARK 1. In [18], one may find examples which says that Proposi-
tion 3.3 is not true if S and T are not continuous on X.

The following propositions show that Definitions 3.1~3.3 are equiva-
lent under some conditions, but first we have:

PROPOSITION 3.4. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and t(x,x) > z forallz € [0,1]. and S, T: X — X
be continuous mappings. Then S and T are weak compatible of type
(A) if they are compatible of type (A).

Proof. Suppose that S and T are compatible mappings of type (A),
then we have

1= lim Fsrs, 772,(x) > lim Frs:, 77:,(t)
00 mn-—00
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and
1= lim Frs;, ssz, () > lim Fsprs, sse,(2).
n—oo - 00

This completes the proof.

PROPOSITION 3.5. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and t(x,z) > z for allz € [0,1], and S, T : X — X
be continuous mappings. If S and T are weak compatible of type (A),
then they are compatible of type (A).

Proof. Let {z,,} be a sequence in X such that lim,_.o ST, = lim,,_. o
Tz, = z for some z € X. Since S and T are continuous, we have

lim FSTzn,TTzn(e) 2 lim FTSrn,TTI,.(E) = lim FTz,Tz(f) =1
n—oo n—oco n—oo
and

im Frs;, ss:,(€) > lim Fsrs, ssz,.(€) =limFs, s, =1
T+ OO0 n—o0

for all € > 0. Therefore, S and T are compatible mappings of type (A4).
This completes the proof.

PROPOSITION 3.6. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and t(x,z) > z for allz € [0,1], and S, T : X — X
be weak compatible of type (A). If one of S and T is continuous, then
S and T are compatible.

Proof. Let {z,} be a sequence in X such that lim, .o Sz = lim, o
Tz, = z for some z € X.

Suppose that S and T are weak compatible of type (A). Assume,
without loss of generality, that S is continuous. Then limn—oo STTn =
Sz = limy 00 SSz, and so, for positive reals ¢ and A, there exists an
integer M(e, ) such that

FSTI,,,S:(G/Z) >1-~A and FSSInySZ(E/2) >1-A

for all n > M(e, A). Further, since S and T are weak compatible of type
(A), we have

n&ﬂ; Frs:, ssz,(€/2) > nlLH;o Fstz, ss:,(€/2) = 1.
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By (P5) and (P3), we have

Fsts, 752,(€/2) > t(FsTs, 552, (€/2), Fssz,, 752, (€/2)),
it follows that lim, .. Fs7z, 75z,.(€) = 1. This completes the proof.

As a direct consequence of Propositions 3.1, 3.4 and 3.6, we have the
following:

PROPOSITION 3.7. Let (X, F,t) be a Menger space such that the T*-
norm t is continuous and t(z,z) > x for allz € [0,1], and S, T : X — X
be continuous mappings. Then S and T are compatible if and only if
they are weak compatible of type (A).

By unifying Propositions 3.4, 3.5 and 3.7, we have the following:

PROPOSITION 3.8. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and t(x,z) > x for allz € [0,1]. and S,T: X — X
be continuous mappings. Then

(1) S and T are compatible type (A) if and only if they are weak
compatible of type (A).

(2) S and T are compatible if and only if they are weak compatible
of type (A).

REMARK 2. In [21], one can find examples which says that Propo-

sitions 3.5 and 3.8 (2) is not true if S and T are not continuous on
X.

Next, we give several properties of weak compatible mappings of type
(A) on a Menger spaces for our main theorems:

PROPOSITION 3.9. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and t(z,z) > t for all z € [0,1], and 5, T: X — X
be mappings. If S and T are weak compatible of type (A) and Sz =Tz
for some z € X, then SSz = STz =TSz =TT-=.

Proof. Suppose that {r,} is a sequence in X defined by v, = z,
n =12, for some z € X and Sz = Tz. Then we have Sz,,
Tz, — Sz as n — oo. Since S and T are weak compatible of type (A),
for every € > 0,

Fsr.17:(€) = nli_{réo Fsrz, 7Tz, (€)

> nl_i_{rgo Frse, 112,(€) = Frs.rr:(€) = 1.
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Hence, we have STz = TT=z. Therefore, we have STz = SSz = TTz =
TSz since Tz = Sz. This completes the proof.

PROPOSITION 3.10. Let (X, F,t) be a Menger space such that the T-
norm t is continuous and t(z,z) > z for allz € [0,1], and S, T: X — X
be mappings. Let S and T be weak compatible mappings of type (A)
and im, .o Sz, = lim,_.oo Tz, = 2 for some z € X. Then we have

(1) limp—oo TSz, = Sz if S is continuous.
(2) imp—oo STz, = Tz if T is continuous.

(3) ST2=TSz and Sz =Tz if S and T are continuous.

Proof. (1) Suppose that S is continuous at z. Since lim,_ o, Sz, =
limy oo Txp = z for some z € X, we have SSz, — Sz as n — oo,
or equivalently, for any positive reals € and A, there exists an integer
M(e, A) such that Fss,, s.(e/2) > 1 — A for all n > M(e, A). Since S
and T are weak compatible of type (A), for every € > 0,

nli_{glo Frse, ssz,(€/2) > nll_{réo Fsrz,,552,(€/2)
and so we have

Frse, s:(€) > t(Frsz, 552, (€/2), Fssz,,5:(€/2)) > 1= A
for all n > M(e, A). Now, we have

im Frs.,s.(€) >t(lim Prs., ss:,(€/2), lim Fss,, s:(€/2))
n-—00 n—o0 n—oo
> t(lim Fsre, ss:,(¢/2), im Fssa,,s:(¢/2))

= t(Fs.,5.(¢/2), Fs.,5:(¢/2))
=(1,1) = 1.

Therefore, lim,_.oo TSz, = Sz This completes the proof.

(2) The proof of lim,—oo STz, = T, follows on the similar lines as
argued in (1).

(3) Suppose that S,T : X — X are continuous at z. Since Tz, — 2
as n — oo and S is continuous at z, by (1), TSz, — Sz as n — co. On
the other hand, since Sz, — z as n — oo and T is also continuous at
z, TSz, — Tz. Thus, we have Sz = Tz by the uniqueness of the limit
and so, by Proposition 3.9, T'Sz = STz. This completes the proof.
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4. Common fixed point theorems

Before proving our main theorems, we need the following lemma ([26]

and [34]):

LEMMA 4.1. Let {z,} be a sequence in a Menger space (X,F,t),
where t is a continuous T-norm and t(z,z) > z for all z € [0,1]. If there
exists a constant k € (0,1) such that

F

Tn Tn4l

(kx) > Fr,_, 2.()

forallz > 0 and n € N, then {z,} is a Cauchy sequence in X .

REMARK 3. In Propositions 3.1, 3.5 and Lemma 4.1, the conditions
“the T-norm ¢t is continuous and #(x,z) > z for all z € [0,1]” can be
replaced by “t(z,y) = min{z,y} for all z,y € [0,1]". In fact, since
t(a,1) = a and t(1,b) = b for all ¢,b € [0,1], we have

t(a,b) < min{t(a,1),t(1,b)} = min{a, b}
for all a,b € [0,1]. On the other hand, we have
t(a,b) > t(min{a, b}, min{a, b}) > min{a, b}

for all a,b € [0, 1], which implies t(a, b) = min{a, b}.

Now, we are ready to prove our main theorems:

THEOREM 4.2. Let (X, F,t) be a complete Menger space with t(z,y)
= min{z,y} for all z,y € {0,1] and A, B, S,T be mappings from X into
itself such that
(4.1) A(X) Cc T(X) and B(X) C S(X),

(4.2) the pairs A, S and B,T are weak compatible of type (A),
(4.3) one of A,B,S and T is continuous,

[Fau,po(k2)]* > min{ [Fsu7o(2)]", Fsuau(z) - Pro ().
Fsy1o(x) - Fsu,au(2), Fsu,1o(t) - Fro Bo(x
(4.4) Fsuro(20) - Fsu,Bo(Z), Fsu1o(x) - Fro aul:
Fsu.Bo(22) Fry au(z), Fsz az(2) - Froy au(z),
Fsu,B.(22) - Fro,po(2)},

)’

)
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for all u,v € X and > 0, where k € (0,1).
Then A,B,S and T have a unique common fixed point in X .

Proof. By (4.1), since A(X) C T(X), for any arbitrary zo € X, there
exists a point 3 € X such that Azg = Tz;. Since B(X) C S(X), for
this point z;, we can choose a point r; € X such that Bz, = Sz, and
so on. Inductively, we can define a sequence {y,} in X such that

(4-5) Yon = T$2n+1 = Az, and Y2n41 = 5$2n+2 = B$2n+1

forn=0,1,2,---

Now, we shall prove Fy,, y,..,(kz) > Fy, _ 4, (z) for all z > 0,

where k € (0,1). Suppose that Fy,. ... . (kz) < Fy,. | y,.(z). Then by
using (4.4) and Fy2n1y2n+1(k'r) < Fy2n1y2n+1(‘r)7 we have

[Fy2nyy2n+l(kx)]2

= [FAzgn,Bzz,,+1(k1')]2

> m1n{[ Y2n-1,¥2n (:c)] Fyon_1,920(%) - Fypr yonyn (T),
Fyncrw2n(T) - Fyo 142 (2), Fyan o (7)) Fyrn 20 (T),
Fym-nym(‘”)’ Yan— 1,y2n+1(21) Fy,n. uyzn(x) y2"ay2n(m)’
Fyonor92n40(22) - Fyp 420 (@), Fya 1 y2n (2)  Fipn g (2),
Fyan192n41(22) * o yansa ()}

2 mm{[ Y2n_ 111‘1271(1‘)]27 1520 (T) * Fypp ypngn (T),
[Fyzn 1:y2n(m)] yZn—l’yZn(‘r) Fy2n;y2n+1(x)
Fy2n—1:y2n(x) : t(Fyan-uyzn(m) Fy2nvy2n+l(‘r)) Y2n—1,¥2n (z),
t(Fy'ln—lvy?n(‘T)’ Fyzn,y2n+1( ))’ Fypnry2nlT),
t(Fyzn 1y (2)s Fyzn,y2n+1(I))'Fyzmyzn“(l’)}

> mm{[ yzn,y2n+1(kx)] [Fyzn,yzn+1(k“3)]27 [Fyzmyznu(kﬂf)]za
[Fy2nay2n+1(k$)] ) [Fyzn,y2n+z(k$)] yzn,uzn+1(k1')
Fyonwrnir (RT), Py o (k) [Fyap yani Kkl)]

= [Fyzn Y241 (kx)] 27
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which is a contradiction. Thus, we have Fy,, 4., (kz) > Fy, | 4..(2).
Similarly, we have also Fy,. ., y,n.:(k2) > Fy, 4, (z). Therefore, for
everyn € N, F, . (kx) > Fy . (z). Therefore, by Lemma 4.1,
{yn} is a Cauchy sequence in X. Since the Menger space (X,F,t)
is complete, {yn} converges to a point z in X, and the subsequences
{Az2,}, {Bzant1}, {Sz2n}, {T2ont1} of {yn} also converge to z.

Now, suppose that A is continuous. Since 4 and S are weak compat-
ible of type (A), it follows from Proposition 3.10 that

AAzy, and SAz,, — Az as n-— oo.

By (4.4), we have

[Fatzan. iz (2)]°
> min{[Fsazym Tronss (7)) Faran Anzan () - EFrepnsn, Brania (2),
FsAz30(2),T22041(T) - FS Az, 4425, (),
F5a230,T22041(2) - Frap 45 Brynia (7),
Fsazs0,T2oni (T) - FSAzy, Brony, (22),
Fsaz30,Te2n41 (T)  Frag, 1, 4422, (1),
F5Az0,B2ang: (22)  Frag, i aaz,,(T),
FsAzz0,44250(2) - FT2g, 41, Adzs, (),

F5A22n,312n+1(2x) : FTI2n+1,BIQn+1 (T))}

Taking n — oo, we have

[Faz,.(k2)]’

> min{[Fas,.()]", Fasa:(2) - Fopo(2), Faz o(2) - Fazoas(2),
Fa..(z) F..(z),Fa;.(z) Fa. .(22),
Fas,o(z) F; a:(2), Fa: (22) - F; 4:(2), Faz a:(2) - Fyoa:(2),
Fa.,.(2z) - F..(z)}

= [FAz,z(x)]za
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which is a contradiction. Thus we have Az = 2. Since A(X) C T(X),
there exists a point u € X such that z = Az = Tp. Again by (3.2), we
have

[Faz,,,Bp(k2)]"

> min { [FSAz2,.,Tp($)]2, FS A2y, AAz,(T) - Frp Bp(2),
FsAzy,,Tp(Z) FSAzy,,Adz2, (), FSAz,, To(Z) - Fp Bp(T),
Fs Az, Tp(T)  FSAzy,,Bp(22), FSAz,, Tp(L) - Frp AAz,, (2),
Fsary,,Bp(22) - Frp AAzy,(T), FSAzgn,AAzs,(T) - Frp Adz,, (),

FsAz,,,8p(22) - Frrp Bp(z)}.

By letting n — oo, we obtain

[F..Bp(k2)]” > min{ [Fa.1p(2)]”, Faz a:(z) - Frp p(),
Fa:1p(2) - Faz a:(2), Fa,1p(z) - Frp Bp(z),
Fa.1p(x) - Fa: Bp(22), Fa:1p(2) - Frp a:(7),
Fa:Bp(22) - Frp a:(z), Fa: a:(x) - Frp a:(z),
FAz,BP(Qm) : Fi"p,Bp(w)}

> [Fz,Bp(x)]zv

which implies that z = Bp. Since B and T are weak compatible of type
(A) and Tp = Bp = z, by Proposition 3.9, TBp = BTp and hence
Tz =TBp = BTp = Bz. Moreover, by (4.4), we have

[Fazsn,p: (k)]

< min{ [Fsz,, 7:(2)]", Fszan aran(2) - Fre,p:(2),
Fsz30,7:(2) - F51yp,Az0n(2), F$24,,7:(8) - F12 Bo(2),
Fsz1,,,7:(2) - Fsz,, B:(22), Fsz,, 7:(2) - Fr1 Az,,(2),
Fs100,8:(22) - Frz a25,(2), Fs24 Azyn (2) - FTz Az, (2),
Fsz,,,B:(22) - Fr; p.(z)}.
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By letting n — oo, we obtain

[F.\p:(k2)])* > min{[F..r:(2)]", F..o(2) - Fr. pa(2),
F.r1.(z)- F, .(2), F. 7:() - Fr; .(z),
F.r1.(z)- F, p.(2z),F, r.(2) - Fr. .(z),
F. B.(2z)- Fr..(z), F. .(z) Fr;.(z),
F. B:(2z) - Fr. B.(7)}

= [F. B:(2)]’,

which means that z = Bz. Since B(X) C S(X), there exists a point
q € X such that z = Bz = Sq. By using (4.4), we have

[Fag:(kz)]” = [Fagp:(kz)]

> min{ [Fsg7:(2)]", Fsg.aq(z) - Fra.p.(z),
Fsq1:(x) - Fsq aq4(), Fsq1:(2) - Fr. B:(27),
Fsq,1:(2) - Fsq,B:(22), Fsq,7:(2) - Frz: a4(x),
Fs4,8:(22) - Fr. ag(x), Fsy aq(z) - Fr; a,(z),
Fs4B:(22)- Fr, p.(z)}

= min{ [F,,.(2)]°, Fr.ag(2) - Fu2(2), s o(2) - Fooag2),
Fro(z)- F..(2),F. :(2) F:.(22),F; .(2) F; a4(z),
F. :(2x) - F. ag(2), F; ag(z) - F, aq4(z),
F,.(2z)-F. .(z)}

= [Fz,Aq(m)]2’

sothat Ag = z. Since A and S are weak compatible of type (4) and Ag =
Sq =z, SAq = ASq and hence Sz = SAq = ASq = Az. Therefore, z is
a common fixed point of 4, B, S and T. Similarly, we can also complete
the proof when B or § and 7.

It follows easily from (4.4) that z is a unique common fixed point of
A, B, S and T. This completes the proof.

As a consequence of Theorems 2.3 and 4.2, we have the following:
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THEOREM 4.3. Let A, B, S and T be mappings from a complete met-
ric space (X, d) into itself such that
(4.6) A(X) C T(X) and B(X) C S(X),
(4.7) one of A, B, S and T is continuous,
(4.8) the pairs A, S and B,T are weak compatible of type (A),

d*(Az, By) < kmax{d*(Sz,Ty),d(Sz, Az) - d(Ty, By),
d(Sz,Ty)-d(Sz, Az),d(Sz,Ty) - d(Ty, By),

1
= Ty) - B Tu) - d(T
(4.9) 5d(S2, Ty) - d(Sz, By), d(Sz, Ty) - d(Ty, Axz),

—;—d(S:L',By) -d(Ty, Az),d(Sz, Az) - d(Ty, Az),

1
5d(Sz, By) - d(Ty, By)},

for all x,y in X, where k € (0,1).

Then A,B,S and T have a unique common fixed point in X .

REMARK 4. Theorems 4.2 and 4.3 generalize and improve the results
of Cho-Murthy-Stojakovié [6].
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