INTEGRABLE MODULES OVER QUANTUM GROUPS AT ROOTS OF 1

YOUNG HYUN CHO1, SAE RAN KWON AND IN-SOK LEE2)

1. Introduction

Let A be a symmetric positive definite Cartan matrix. As in [4], we denote by U the quantum group arising from A and U_{λ} be the corresponding quantum group at a root of unity λ . In [4], Lusztig constructed irreducible highest weight U_{λ} -modules $L_{\lambda}(z)$ for $z \in \mathbb{Z}^n$ and showed that $L_{\lambda}(z)$ is of finite dimension over \mathbb{C} if and only if $z \in (\mathbb{Z}^+)^n$.

It is quite natural to ask what would be the integrable U_{λ} -modules. In this paper, we give a natural definition of integrable U_{λ} -modules and show that irreducible integrable highest weight U_{λ} -modules are also in one-to-one correspondence with $(\mathbb{Z}^+)^n$. Our result is based on [4, Theorem 7.4] which resembles the Steinberg's tensor product theorem (see Theorem 2.2).

As remarked in [3], the results of [3], [4] and hence the results of this paper can be obviously extended to an arbitrary positive definite Cartan matrix A (see Remark 2.6).

This paper can be considered as a supplement to Lusztig [4]. We will freely use the definitions and the notations given in [4] and will not repeat them here.

2. Integrable U_{λ} -modules

As in [4, 4.6], we only consider U_{λ} -modules of type 1. If V is a U_{λ} -module of type 1 and $z \in \mathbb{Z}^n$, V_z denotes the z-weight space of V ([4, 5.2]).

Received November 4, 1994. Revised December 7, 1994.

Supported in part by SNU-Daewoo Program^{1) 2)} and the GARC-KOSEF²⁾.

DEFINITION 2.1. A U_{λ} -module V of type 1 is integrable if $V = \sum_{z \in \mathbb{Z}^n} V_z$ and if $E_i^{(l)}$ and $F_i^{(l)}$ (i = 1, ..., n) are locally nilpotent endomorphisms of V. We note that E_i and F_i (i = 1, ..., n) are always nilpotent on V. (Compare with [1, §3.6] and [3, 3.1].)

Let z be an arbitrary element of \mathbb{Z}^n . We can write uniquely z=z'+lz'' where $z'=(z'_1,\ldots,z'_n),\ z''=(z''_1,\ldots,z''_n)\in\mathbb{Z}^n$ and $0\leq z'_i\leq l-1$ for all i. Using the Hopf algebra structure of U_{λ} , we can regard the tensor product $L_{\lambda}(z')\otimes L_{\lambda}(z'')$ as a U_{λ} -module.

THEOREM 2.2. ([4, Theorem 7.4]) The U_{λ} -modules $L_{\lambda}(z)$ and $L_{\lambda}(z') \otimes L_{\lambda}(lz'')$ are isomorphic.

Using above theorem we prove the following lemmas.

LEMMA 2.3. If $E_i^{(l)}$ is locally nilpotent on $L_{\lambda}(z)$, then $E_i^{(l)}$ is also locally nilpotent on $L_{\lambda}(lz'')$.

Proof. Let x' be a primitive vector of $L_{\lambda}(z')$ and v be any non-zero element of $L_{\lambda}(lz'')$. Then

$$E_i^{(l)}(x'\otimes v) = E_i^{(l)}(x')\otimes v + x'\otimes E_i^{(l)}(v) = x'\otimes E_i^{(l)}(v),$$

because x' is a primitive vector and so $E_i^{(l)}(x') = 0$. Since $L_{\lambda}(z) \cong L_{\lambda}(z') \otimes L_{\lambda}(lz'')$ and $E_i^{(l)}$ is locally nilpotent on $L_{\lambda}(z)$, $E_i^{(l)}$ is also locally nilpotent on $L_{\lambda}(z') \otimes L_{\lambda}(lz'')$. So there exist $m \in \mathbb{N}$ such that $(E_i^{(l)})^m(x' \otimes v) = 0$. But

$$(E_i^{(l)})^m(x'\otimes v) = x'\otimes (E_i^{(l)})^m(v).$$

So $(E_i^{(l)})^m(v) = 0$ and $E_i^{(l)}$ is locally nilpotent on $L_{\lambda}(lz'')$.

LEMMA 2.4. If $F_i^{(l)}$ is locally nilpotent on $L_{\lambda}(z)$, then $F_i^{(l)}$ is also locally nilpotent on $L_{\lambda}(lz'')$.

Proof. Let x' be a primitive vector of $L_{\lambda}(z')$ and v be any non-zero element of $L_{\lambda}(lz'')$. Then, since $z' \in (\mathbb{Z}^+)^n$, dim $L_{\lambda}(z') < \infty$ by [4, Proposition 6.4]. Also by [4, Proposition 5.1], $F_i^{(l)}$ is nilpotent on $L_{\lambda}(z')$.

So there exist $m \in \mathbb{N}$ such that $(F_i^{(l)})^{m-1}.x' \neq 0$ and $(F_i^{(l)})^m.x' = 0$. Consider the element $(F_i^{(l)})^{m-1}(x') \otimes v \in L_{\lambda}(z') \otimes L_{\lambda}(z'')$. Then

$$F_{i}^{(l)}.((F_{i}^{(l)})^{m-1}(x') \otimes v)$$

$$=(F_{i}^{(l)})^{m}(x') \otimes v + (F_{i}^{(l)})^{m-1}(x') \otimes F_{i}^{(l)}(v)$$

$$=(F_{i}^{(l)})^{m-1}(x') \otimes F_{i}^{(l)}(v).$$

Therefore, for any $s \in \mathbb{N}$, we have

$$(F_i^{(l)})^s \cdot ((F_i^{(l)})^{m-1}(x') \otimes v) = (F_i^{(l)})^{m-1}(x') \otimes (F_i^{(l)})^s(v).$$

Also, since $F_i^{(l)}$ is locally nilpotent on $L_{\lambda}(z') \otimes L_{\lambda}(z'')$, there exist $n \in \mathbb{N}$ such that $(F_i^{(l)})^n ((F_i^{(l)})^{m-1}(x') \otimes v) = 0$. Therefore

$$0 = (F_i^{(l)})^n ((F_i^{(l)})^{m-1}(x_0) \otimes v)$$

= $(F_i^{(l)})^{m-1}(x') \otimes (F_i^{(l)})^n(v).$

So $(F_i^{(l)})^n(v) = 0$ and $F_i^{(l)}$ is locally nilpotent on $L_{\lambda}(lz'')$.

Next, we return to the integrable U_{λ} -modules.

THEOREM 2.5. The map $z \mapsto L_{\lambda}(z)$ induces a one-to-one correspondence between $(\mathbb{Z}^+)^n$ and the set of isomorphism classes of irreducible integrable highest weight U_{λ} -modules.

Proof. If $z \in (\mathbb{Z}^+)^n$, then $L_{\lambda}(z)$ is clearly integrable by [4, Propositions 5.1 and 6.4]. Conversely, let $L_{\lambda}(z)$ be an irreducible integrable highest weight U_{λ} -module with highest weight $z \in \mathbb{Z}^n$. We can write uniquely z = z' + lz'' where $z', z'' \in \mathbb{Z}^n$, $z' = (z'_1, \ldots, z'_n)$ and $0 \le z'_i \le l-1$ for all $i = 1, \ldots, n$. By [4, Proposition 7.5], $L_{\lambda}(lz'')$ can be regarded as a \overline{U}_1 -module and $L_{\lambda}(lz'')$ is an irreducible \overline{U}_1 -module with highest weight z''. Now $E_i^{(l)}$ and $F_i^{(l)}$ are also locally nilpotent on $L_{\lambda}(lz'')$ by Lemma 2.3 and Lemma 2.4. Since $E_i \in \overline{U}_1$ acts as $E_i^{(l)} \in U_{\lambda}$ on $L_{\lambda}(lz'')$, $E_i \in \overline{U}_1$ are also locally nilpotent endomorphisms of $L_{\lambda}(lz'')$. Similarly, $F_i \in \overline{U}_1$ are also locally nilpotent endomorphisms of $L_{\lambda}(lz'')$. Recall that \overline{U}_1 is the universal enveloping algebra of the simple Lie algebra corresponding to the Cartan matrix A. Hence $L_{\lambda}(lz'')$ is an irreducible integrable highest weight module with highest weight z'' over this simple Lie algebra. So by [1, Lemma 10.1], $z'' \in (\mathbb{Z}^+)^n$. Thus $z = z' + lz'' \in (\mathbb{Z}^+)^n$.

REMARK 2.6. The results in [3] and [4] are valid if A is an arbitrary positive definite Cartan matrix. (See [3, 4.14] and [2].) Therefore our results are also valid in that case.

References

- V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, 1990.
- 2. M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
- 3. G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237-249.
- 4. G. Lusztig, Modular representations and quantum groups, Contemp. Math. 82 (1989), 59-77.

Young Hyun Cho Department of Mathematics Seoul National University Seoul 151-742, Korea

Sae Ran Kwon Daelim Junior College Anyang 430-715, Korea

In-Sok Lee Department of Mathematics Seoul National University Seoul 151-742, Korea