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ESTIMATES OF INVARIANT METRICS ON
SOME PSEUDOCONVEX DOMAINS IN C*®

SANGHYUN CHoO

1. Introduction

In this paper we will estimate from above and below the values of
the Bergman, Caratheodory and Kobayashi metrics for a vector X at
z, where 2 is any point near a given point zg in the boundary of pseu-
doconvex domains in C". Throughout this paper,  will be a smoothly
bounded pseudoconvex domain in C" with smooth defining function r
and zy € bQ is a point of finite type m in the sense of D’Angelo 7], and
the Levi-form 807 (z) of b has (n — 2)-positive eigenvalues at zo. Note
that the type m at z; is an even integer in this case. We first give the
definition of each of the above metrics. Let X be a holomorphic tan-
gent vector at a point z in 2. Denote the set of holomorphic functions
on §! by A(2). Then the Bergman metric Bg(z; X ), the Caratheodory
metric Cq(z; X) and the Kobayashi metric Kq(z; X) are defined by

Ca(z; X) =sup {|Xf(2)]: f € AQ), [flli~a <1}
Kq(z;X) =inf{1/r:3f: D, C C' - C" such that f, (%h) =X}
Bo(z: X) = ba(2; X)/(Ka(z,2))*,

where D, denotes the disc of radius r in C!, and

Ko(z,2) =sup {|f(2)|": f € A(Q), [fl120) < 1)
ba(z; X) =sup {|Xf(2)|: f € A(Q), f(z)=0, [fllr2(@ <1}
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We may assume that Or/dz; # 0 in a small neighborhood U of 2.
After a linear change of coordinates, we can find coordinate functions

21,22,... ,2n defined on U such that
0
Ly =—,
1 aZl;
0 0 o
LJ' :a_zj+bj-£;’LjTEO’ b]'(ZO):O, 7=2,...,n,

which form a basis of CT(U) and satisfy
a_a-r(zo)(L,',E]-) =05, 2<4,7<n-1,
where 6;; = 11if 7 = j and 6;; = 0 otherwise. For any integers j, k > 0,
Set L£;400r(z)=Ln...Ly Ly... L, 80r(2)(Ly, Ly),
(j—1) times (k—1) times

and define
(1.1) Ci(z) = max{|L; x00r(z)|;j + k =1},

n(z,6) =min{(§/Ci(z))/" : 1=2,... ,m}.

Let X = b, +b3Ly+ ... +b,L, be a holomorphic tangent vector at
z and set

n—1
(1.2) Mm(2; X) =[ba[[r(2)] ™ + Y [Balir(2)| 7?2
k=2

+1bal Y 1CH) M ()
=2

Then we can state the main result as follows

THEOREM 1. Let Q be a smoothly bounded pseudoconvex domain
in C" and let zq € b be a point of finite type m in the sense of
D’Angelo. Also assume that the Levi-form 00r(z) of bQ has (n — 2)-
positive eigenvalues at zg. Then there exist a neighborhood U about
29 and positive constants c and C such that for all X = byL1+...b,Ly
atz e UNQ,

(1.3) cMp(2;X) < Ba(z;X), Cqo(z;X), Kq(z:X) < CMy(z;X).
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REMARK. Because |Cpr(z)| > ¢’ > 0forall z € UN K, (1.2) says, in
particular, that

Ba(z;X),Ca(z; X),Ka(z; X)

n-1
2 (ballr ()17 4+ Y [balIr(2)] 712 + fbalIr(2)[ 72/
k=2

for a holomorphic vector field X = b;L; + ... + b,L,, at z.

Several authors found some results about these metrics for some
pseudoconvex domains in C”, but in each case the lower bounds are
different from the upper bounds [1,5,8,9,12]. In [2], Catlin got a result
similar to above theorem in C?, and this has motiviated the author
to investigate the above theorem. To prove the theorem, we must get
a complete geometric analysis near zy and this will be done by using
the “maximal plurisubharmonic functions” constructed in [6]. In [10],
K.T. Hahn got the following inequalities

(1.4) Ca(z; X) < Bq(z;X), Kgq(z;X).

Therefore the estimates for the lower bounds of Cq(z; X) will suffice
for the lower bounds of Bq(z; X) and Kq(z; X). For upper bounds of
Bq(z; X), we will use the following estimates for the Bergman kernel
function Kq(z,2)

(1.3) Ka(z,2) ~ Y1) r(2) 2",
{2

which was shown by the author in [6].

Although we are employing some of the methods similar to those
of Catlin in C%-case, where he used estimates for the 8-Neumann op-
erator. we will show some technical theorems in detail to clarify the
difference between C? and C™ case.
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2. Pushing out the boundary and Bumping theorem

For each 2’ € U, we take the biholomorphism @;1 : Ct > C
which straightens b{? near z; [6, Proposition 2.2]. That is, &,/ satisfies
®.'(z") =0, ®2'(z) = ¢, and

P(@u(() =)+ ReG+ Y Y Re (bu(=)0TAC)

a=2 j+k<m/2

7, k>0
2.1
2 Y gt +Z|<al2
j+k<m
j k>0

0 (IGIG1+1CICT+ =161 + [cal ™).

Set p(¢) =r o ®,((), and set
(2.2)
Ay(2") = max{]a;, k( )i jt+k= l}

2<1
By(z') = max{|b7} <a

<m
2 <n -1} 2 < <m/2.

For each § > 0, we define 7(z’, ) as follwos;

(23)  7(z,6)= min {5/A1 N (51/2/3,,(2'))1/"}.
2<¥ <m/2

Since Am(zo) > ¢ > 0, it follows that A,,(z') > ¢ > 0for all 2/ € U if
U is sufficiently small. This gives the inequality,

1< r( 6) < Y™ el

REMARK 2.1. It was shown in [6, section 2] that (61/22'(Bj(z")) >
7(z',6) whenever § > 0 is sufficiently small. Hence the terms mixed
with (, and (o, @ = 2,... ,n — 1, would not be and important ones
in (2.1) and (2.3) and hence 7(2',6) = min {(6/4,(z'))}/; 2 <1< m}
for sufficiently small é.

The definition of 7(z',é) easily implies that if §' < 4", then

(5’/5”)1/2T(Z’,5”) < T(zl’él) < (6!/6H)1/m7,(:l,6”)-
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Because we are fixing z’ in this section, we set 7 = 8,7y = ... =

1 =68Y% 1, = 7(2',6) = r and define

Rg(zl) = {C S Cn; |Ck’ <TR, k=1.2,... ,7’1,}, and
5(z") = {2({); ( € Rs(2")}.

Then for z € Q4(z'), the author showed in [6, Proposition 2.7] that

(2.4) 7(2',6) Sn(z,8) S r(2',6) and
n(z,6) =~ 1(z,86).

For e >0, welet Q. = {z:7(z) < ¢} and set S(e) = {z: —e < r(z) <
¢}. In [6, Proposition 3.2}, the author proved the following theorem
which shows the existence of smooth plurisubharmonic functions on
with "maximal Hessian” near 5.

THEOREM 2.1. For all small § > 0, there is a plurisubharmonic
function s € C*°(Qs) with the following properties
|)\6 ‘<1 ZEUQQE
( ) Forall L = Z;: b;L; at z € U N S(%),

n—1
8OXs(z)(L, L) = 87|y [P+ 671 [bel? + 772 bal?,
k=2

(iii) If @, is the map associted with a given 2’ € U N S(8), then
for all ( € Rs(z") with |p(¢)]| < &,

ID¥(As0 @, )] S C b~ g~/ 2wt Fan_y) —an

where a = (aq,... ,a,).

With this family of functions As, we shall construct for each z' €
U N b2 and each small 6 > 0, a domain ( locally defined in U ) Q. s
which contains 2 such that the boundary of Q. s is pushed out as far
as possible, given the constraints that d(z', b, 5) < é and that bQ, s
1s pseudoconvex. Since z' will be fixed in this section, we will work in

(-coordinates defined by &..(¢) = =.
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Set p(¢) = r(®(¢)) and set U' = {¢ : ®.(¢) € U}. For all small s
and é > 0, define
n—1 m 1/2
(25)  Ts(z\ O = [+ 101+ ) (¢l + Y Azl

a=2 1=2

and
(2.6) Wes(2) = {Ce U : [p(Q)] < sJs(¢)}.

NOTE. From Remark 2.1, and (2.3), the terms By (z')?|Ca|? [Cal?,
2 <1' <m/2 will be absorbed into y_ ", Ai(2')?|¢a|*" in the definition
of Js(z', ().

Set Js(z',() = Js(¢) for the convenience.

PROPOSITION 2.2. For each z' € UNI and each small § > 0, there
exists a small real-valued function H, 4(¢) defined in W, s(z') (where
s is a small constant independent of z’' and § ) such that

(i) —Js5(¢) = Ha 5(C),
(i) for any L = by L} + byL}y + ... + b, L1,

T E = | |bs |2 }

aaHzr,,s(L,L)(C) ~ J&(C) {(Jﬁ(c))z k§=:2 (JE(C)) + 7'(z’, J&(C))2

(iii) for any L = b, Ly + ...+ b,L" at (,
1 n

|b1 | || b
ILH. 5| < Js(¢) ( 75(0) +Z Tzt T(z'.Jé(g‘)))

where L} = (@;I)Lk, k=1,2,...,n.

Proof. Set Ny = [logy(1/6)]. Let Dp = {C € C": |¢)| < R, i =
1,2,...,n}, and let ¢ € C§g°(D; — D;y4) be a function that satisfies
¥(¢)=1for ¢ € Dy — Dyp. Forall k, 1 < k < Ny, set

Pi(Q) =¥ (25,22, . 2 Gy, (2,279 7))
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and for & = Ny, set

N (0) = 6 (240G, 2003, 22,y (227 M) TG

where ¢ € C§°(D,) satisfies ¢(C) =1lfor(e D1 If one combines (2 ( 3),
(2.5) nd the fact that (6'/2/By(z' )/ > r(z',6) for I' = 2,... ;m/2 |
one obtains that

(2.7) Js(() = 27F, (€ supp ¥

For each 6 > 0, set Ay = As o ®,., where A5 is the plurisubharmonic
function as in Theorem 2.1. Choose Ny so that A,—«, is well-defined
for all ¢ € supp ¥x whenever k > Ny, and set

H. 4 22 ¥k($) (M- 1,(€) = 2).

k=N,

Then H.: s is well-defined (fixed finite sum independent of z' and §).
From (2.5), (2.7) and from the fact that H, s(¢) ~ —27% for ( €
supp Yk, property (i) follows. Also the major part of the Hessian of
H, 5 will be 65/\2_k,(C) and other error terms will be absorbed into
00X ,-k4(¢) for sufficiently small ¢. This fact together property (i)proves
properties (1) and (iii). O

Set Q. = &_'(Q) and set Qo e={CeC": p({) <€}
PROPOSITION 2.3. For all small § > 0, there exist a function gs(()
and constants b > 0 and C' > 0 so that

(1) gs is defined and plurisubharmonic on Q.1 4,
(11) supp gs C Res(2') N Qur s,
(i) |gs(O) <1, ( € Q.1 ps,

(iv) if L=bL] +... 4+ b, L, at ( € Rps(2'), then
_ _ n—1
00gs(L,L)(¢) 2 672 ba* + 671 Y s[> + (2, 6)7*|ba|?, and
k=1

) |Dgs(()] S Cob™ 1§71/ 2eattan-s)z=an ¢ ¢ Reg(2'),
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where o = (a1,... ,a4).

Proof. If we use Theorem 2.1, the proof of this theorem will be very
close to that o C?-case of Proposition 4.2 in [2] and hence it will be
omitted here.

With Proposition 2.2, we can prove the following theorem which
shows that the boundary of 2., can be pushed out essentially as far as
possible.

THEOREM 2.4. For each sufficiently small 6 > 0, there isone param-
eter family of "maximal pushed-out” pseudoconvex domains {25, ¢}e>o
which contain §Q,» near the origin.

Proof. Let U] be a small neighborhood of the origin with U] CC
U’ = ®,'(U). Then one has [dH. s(¢)| S 1for ( € W, 4(z") by the
property (iii) of Theorem 2.2. Hence for all small € > 0, the function

Py 5(C) = p(C) + eH. 5(C)

satisfies L # 0 in U] and therefore form a family of defining func-

tions of hypersurfacee {¢: p%(¢) =0} in W, 5(2"). For (' € b2 N U,

let ¢" be the unique projection of (' onto {¢ : p% 5(¢) = 0} = bQ‘z,‘é.

Suppose L"p¢,(¢") = 0 with |L"| = 1. If one writes L" := eL} +s2L5 +
o+ s, Ll = el + T then L"p¢,(¢") = 0 implies that

“eLi(p+eH s) (") + T (p+eHu 5)(¢")
=e(Lyp+ L\ Ho 5)(C") + €T Ha 5(C") = 0,

which shows that

le| ~ e[ T"H. 5(C")]
n-—1
< eJs(¢ (Zisku ¢y 4 (s ',Ja(c"»"‘tsni).

Therefore we may assume that |T'| > /2 provided that ("} is suffi-
ciently small (i.e., U’ is sufficiently small ). Because a—ép(T',—Tl)(C”) >
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0, one has

B0p(L", T")(¢") = 80p(T" + Ly, T+ L1 (")
= 80p(T" . T)((") + Ofe)

n--1
z—eJé(c")(r(z',Ja(g‘"n—llan k] Js(¢! '/2)

k=:2

Since |(" — ('] < J5(¢'), one sees that J5(¢') = Js(¢"). If one combines
this fact and |T’| > 1/2, and the property (ii) of Proposition 2.2, one
gets,

11

8dp%, 5(L"T")

z—CeJ&(cP”mE)( (), Js(C isny+z|sku5 ‘/2)

+ ecJs(¢ ( )%l |2+Z k2 Ts(¢") _2|3nt2) 20

provided that J5((') is sufficiently small ( or equally if |¢'] is sufficiently
small ). This completes the proof. [J

Now we choose €5 > 0 so that
sup{p(C) : ¢ € Res(=') and pS(C < 0 < bo,

where b is the small number as in Proposition 2.3. This ¢y > 0 can be
chosen independently of z' and 6, and we set p,({) = p(¢). Then
the function ¢s(¢) ( as in Proposition 2.3 ) is well defined on the set
{C:p(C) <0} = Q4. For ¢’ near 0, define a polydisc P,(¢') by

(2.8)
Po(¢") = {C € C™ 1[G = 1] < ads(¢"), [¢n = Gl < 7= ads(CN),
Gk = Gl < (ads(CNM? k=2....,n—1}.
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PROPOSITION 2.5. There exist constants a > 0 and d; > 0 ( in-
dependent of z',(' and § ) so that if (' € Q, and |('| < dy, then
p=(¢) <0 for ¢ € Pa(¢').

Proof. We may assume that (' € b2, (this will be the worst case).
If a 1s sufficiently small (independent of 2’ and §), then

(2.9) Js(¢) m J5(¢"), ¢ e Pu((').

JFrom the property (i) of Proposition 2.2, and with (2.9), there exists
a small constant ¢ > 0, such that

(2.10) H.5(¢) < —eJs(¢), (€ Pal().

By a simple Taylor’s theorem argument, one can show that

(2.11) p(Q)] < Cads(("), (€ Pa(().

Since p.(¢) = p(¢)+eoH. 5((), using (2.10) and (2.11) we have p({) <
0 if a is chosen so that a < cep/C. This completes th proof. [

The existence of the following two-sided bumping family of pseudo-
convex domains was shown by the author in [4].

THEOREM 2.6. Let Q be a smoothly bounded pseudoconvex domain
and let zg € b be a point of finite type. Then there is a neighbor-
hood V of zy and a family of smoothly bounded pseudoconvex domains
{€Q:¢} —1<i<1 satisfying the following propoerties;

(1) =1,
(1) y, CQy, ity <ty

(ii) {0Q¢}-1<t<1 is a C™family o f real hypersurfaces in C" and

the points of 3Q; NV are finite type,

(iv) Dy—D_, CV for all t.

REMARK 2.2.

(1) Property (iii) means that 3Q, — 0%y, in C*-topology as t
goes to ty.

(2) There is a neighborhood V of zy € b2 such that the types of
the points of V N b2 are bounded and Theorem 2.6 holds on
that neighborhood [3].
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(3) From the construction of &, and p’((), we can choose d; > 0
and a neighborhood U CC V of z; ( independent of z' ) so that
p’, is defined in {¢ : (| < d;} and satisfies all the properties in
this section for all 2z’ € QN U.

Set Q4 = {( € C*: &,(¢) € Q}, where {€;} is the family of
domains as in Theorem 2.6. Let us denote J5(¢) = J5(¢, 2') to clarify
the dependence of z'. Set

Qus=1{C:|¢(|<d; and p’({) <0} and
0.5 ={C:|(l <dy and pL(() =0}
The construction of p/, in this section shows that if ( € Q. and if
di/2 < |(] < dy, then
d(C, b2 ) 2 TS(C, 7).

Since Ap(2') 2 1 for all z' € U, it follows that Js(¢,2') = 1 when
dy1/2 < || < dy. Therefore there is a constant ¢; > 0 so that

d(C. 882, 5) > e,

for ( € UNbQ and d1/2 < (] < d;. Choose t = t; sufficiently small so
that

>

¢

d((,tho,zl) < C1/2 if d1/2 < Kl < d.
Now define a domain er,é by
Qs ={( € Qupw 1 1¢] 2 d1} U { Qg0 N Qi s}

Since pseudoconvexity is a local condition, ./ 5 is a pseudoconvex
domain. By combining the properties of Q. s and Q4, ., we obtain

PROPOSITION 2.7. For all 2z’ near zy and all §, 0 < 6 < &, the
domai {2 2,6 has the following properties;
(i) Qz:,5 is a bounded pseudoconvex domain that contains Q/,
(11) the function g5 of Proposition 2.3 is defined on sz‘g,
(1ii) there is a constant a > 0 so that for all (' € Q.+ with |('| < d,,
Pa(cl) - Qz’,&s
(iv) in the region |¢| > dy/2, the boundaries b§}, s are independent
of § and depend smoothly on z', i
(v) in the region {( : d1/2 < |{| < d1}, the boundaries b2, s are
of finite type, uniformly in z', and é.
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3. Metric Estimates

For the lower bounds, it is enough to find lower bounds for Cq(z; X)
because of (1.4). Assume that r(z) = —b6/2 and let z’ be the projection
of z onto b2, and @, be its associated map. Here b > 0 is the number
as in Proposition 2.3. Set ¢ = (—b6/2,0,...,0) = (¢8.¢5....¢0).
Then by (2.1), (2.2) and (2.3), there is a small constant ¢ < b such
that the polydisc
(3.1)

B ={(:|¢ +b6/2 < eb,|Cal < er(2',8),|1Ck] < 62, 2< k <n—1},

is contained in €, and hence the properties (iv) and (v) of Proposition
2.3holdon B. Let Y = (®.').X = b, L} +...4baL!, be a vector at (s,
where L = (@;1),“ for : = 1,2,... ,n. From the coordinate changes
as in Proposition 2.2 in [6], one has

0
3.2 Ly = 5,
( ) 1 3@1
e g
T8 oG
— —1/2 8p 0
2<k<n-1,
E wh g e FEkEr oL
g 0
L = — 4+ b()=—,
ac, T "%
here b(¢) = — (22" (22 ' ; ;
where b(() = — (Bm) (Bcn) and P = (Py;) is a unitary matrix,
and A,’s are positive eigenvalues of 89r(z'), j = 2,...,n — 1. We
may assume that A\; > ¢>0on U for j =2,... .n—- 1. Set 7, = ¢,
T = 7(2',8), 7o = 6"/, k = 2,... .n — 1. Let k¢ be the minimum
number such that
(3.3) |bkol7',:0] = max{|bk|r; 'k =1,2,... ,n}.

Set v(¢) = 61 + b(‘)/2) 1f ko = 1, v(¢) = 77, if kg = n, and set
v(() =6~ 1/22 PkOJ C] for 2 < ky < n—1. Since we may assume
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that ¢ <1 and Aj < 1, we have the inequality supg|v| < 1. From the

expansion in (2.1), one can see that %(Cb) =0, =2,...,n, and
2

hence from (3.2),

(3.4) IYo(¢t)| = m'd.X{lb[Tk_l chk=1.2,....n},

provided that ¢ is sufficiently small. Set ¢(¢ ¢) = gs(¢) + |¢]? and set

M¢) = x(é(¢)), where x(t) is a smooth convex increasing function
with x'(t) > 1 and g4 is the function as in Proposition 2.3. Using
the standard a—estlmates on Q. 5 with weight e~*(¢) and from the

estimate Z?J -1 Bg o C)ft Z] _, |t:1277% for ¢ € B, one has for

any g = Y. " . g; dC; € D(T*)n D(S) with Sg =0,

85 [ e [ Y ey Tl
Q, ,~B B3

where T* and S are densely defined operators induced from 8 and 3.
Suppose f = 3" ]f,dC satisfies Sf = 0. Then from standard theory
of 9 and (3.5), there is u € LUVO(Q,/J, ) (=weighted L2-space in ./ 5)

such that Ju = f in weak sense) and,

66 RS [Pt [ e
25— B B i=1
For ¢ > d > 0,set By = {¢: |G ~ 8 < dryi = 1,2, ,n}. Since

E:lj - a—c—a%-t t; 2 3w 72|t on B, there is a small constant d > 0

(lndependent of m,...,7a) so that
(3.7) #(C) > Re h(( dz “2¢ - C8)?, C€ By,
where

R(C) —22 ac, G Z a<,a<, -G
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Let v € C§°(U), where U is the unit polydisc in C" such that (() =1
if (] <1/2,:=1,2,... ,n. From (3.7), we conclude that if

_ (1+b6/2 ¢ Cn
wd(C)""lb(——'cl_ﬁ'—*a;_;v 7&;)’

and if a = nd3/8, then

(38)  Reh(¢) < —a, for ( € {(: ¢(() < a} Nsupp .

Let x be a smooth convex increasing function that satisfies x(t) = 0
for t < a/2 and x"(t) > 0 for t > a/2. Now define

As(€) = #(¢) + *x(8(¢))

and set

@y = g(zpdve’h) = ve® Oy, = Z ag,,'dzl.

=1

Since |%%‘| < 771 it follows that o, = ) a, idC satisfies

(3.9) / Zrﬂas,,‘[ze”)"dV 5/ c29Reh—0 ~3%x(8) g/
B i=1 s

upp 9va

Suppose ¢(¢) > 0. Then x(¢4(¢)) > x(a) > 0, so the s>-term is pre-
dominant. If ¢(¢) < a and { € supp ¢4, then Re h(¢) < —a by
(3.8). So the integrand in the integral on the right-hand side of (3.9)
approaches to zero uniformly as s converges to infinity. Hence from
(3.6) and (3.9), we conclude that for any ey > 0, there exists so > 0
(independent of 71,...,7,) and a function u,, so that Ou,, = a,, and

J

(3.10)

n
|u30|2e‘*‘0dV5/ Y rHas,ilfeMedV
B =1

5/ B E()dVSGUHTiZ.
supp ¢4

=1

2’6
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From the property (v) of Proposition 2.3, there is e > 0 (mdependent
of z' and §) so that ¢(C)<a/2f0ralleB ={¢: ¢~ <er, i =

1,2,...,n}. Therefore A,(() is independent of s for ¢ € B, and hence
Ug, is holomorphic on B, and satisfy

au’So — - — —
(9Ck [ Tk ’ (H E 2) /B'c |us, e Moo dV

7=1

n n
-2 ~2 2 _ ., -2
STy HT]- €0HT]- = €T s
Jj=1 7:=1

for k = 1,2,...  n. Therefore it follows from {3.2) that
[ Xuso () S Ve Y Ibelre! < ny/egmax {[belrf?: k=1,2,... .n}).
k=1

Set f = vyyge*™*® —u,,. Then f is holomorphic and from (3.4), it follows
that
(3.11) Y £(¢P)| 2 max {|be|r7! b =1,2,... ,n)},

provided that € is sufficiently small.
Let us assume, for a moment, that supg , |f| < C, where C is inde-

pendent of 2’ and é. Then (3.11) and the definition of Caratheodory
metric shows that

(3.12) Cq,, (Y;(¢%) > Ca., 6(1/ ) 2 max {|bx|r, ' 1 k=1,2,... ,n}.

On the other hand, the polydisc B about (% lies in 2. So one can
easily obtain that

(3.13) CQZ,(Cﬁ;Y) <Cp(ChY) = rna)c{[bk|7‘k—1 tk=1,2,... ,n}.
From (1.1), (1.2), (2.3) and (2.4), we have

max{[be|ry !k =1,2,... n} ~ Mu(z; X)
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and hence from the invariant property of Caratheodory metric, and
with (3.12), (3.13), one has

(3.14) Cal(z; X) = Ca,_, (("Y) & Mu(z; X).

To show that supg ,|f| < C, we use the fact that f is holomorphic

in a larger domain sz,g. Assume ( € Q. and I(| < dy. Then from
Proposition 2.7, one can see that P, C Q. 5. Since [vipge®?| < 1 and

from the estimate (3.10), it follows that fP © [f12dV < H] , 7}, and
hence
HOIS Vo)™ [ 7PV S 1.
v Py ()
because Vol(P 2 [}, 7}. When [¢| > d, we use the Kohn’s

global regularxty theorv and some cut-off functions as Catlin did in
[2]. Therefore we proved that supg ,|f| <1 and hence (3.14) has been
proved. "

To obtain an upper ound for the Bergman metric, we note that ./
contains the polydisc B about (%. Thus by elementary estimates, one
has for any f € L%(Q,) N A(Q.),

13) o
agf (QIPS I_I A L2 @

for k =1, 2 .»n. From (2.1) and (3.2), it follows that the coeflicient
b(¢{) of == 6( in L' satisfies |b(¢%)| < é and ] (( ) < 612 for j =
2,...,n— 1. Therefore, if Y = 5"} _, 'k isa Vector at(?, then

(3.15) b, (%) S (3 ol TT 777
k=1 =1
In {6], the author showed that

P
(3.16) FOMSNSES || B

i=1
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Combining (3.15), (3.16) and from the definition of Bq(z; X), it follows
that

Ba(z;X) = Ba, (¢5Y) S Jbilri .
k=1

and hence one has
(3.17) Ca(z;X) = Ba(z;Y) &~ My (2: X).

To show Kq(z; X) ~ Mn(2;X), we set

B Op . _1n—1__‘_1/26p ¢ _ _

=~ () ()
bo = (BCI(C) BCn(C) .

Therefore we hae |ag|, [bs] <6 on B. Set

and set

R = min{dyer|bk| ™' 1 k=1,2,... ,n}.

Then
n—1 n—1
FO) = (= b8/2+ (b + Y arbi+ bado)t. 32 3~ b Prat,
k=2 =2
n-1 .
RERER A ) /\;i/]‘z Z kak,Tl—lt*, bnt)
k=2

defines a map f : Dp — B with f.(£o) = X provided that d, is
sufficiently small. Hence

Ko, (¢5Y) < Kp(¢%Y) < R™' < max{|bi|(cdyri)™' : 1< k < n}

Smax{lbklrk"l ck=1,2,...,n}

S Il < Ca, (5 Y).

k=1
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Again from the invariant property of Kq(z;X) and (1.4), it follows
that

(3.

18) Kq(z;X) = Kgq_,(¢%Y) ~ Cq(2; X)

If one combines (3.17) and (3.18), one will get

Ca(z; X) = Bq(2; X) = Ka(z; X) = M,,(z; X),

and this proves our main theorem. [J

REMARK 2.3. It seems that Kohn's ideal type and D’Angelo’s finite

1-type are same in our case. This will be discussed in a forthcoming
article.

10.

11.

12

References

. Bedford, E. and Fornaess, J. E., Biholomorphic maps of weakly pseudoconver

domains, Duke Math. J. 45 (1978), 711-719.

. Catlin, D. W., Estimates of invariant metrics on pseudoconez domains of di-

mension t wo, Math. Z. 200 (1989), 429-466.

. Cho, S., On the extension of complex structures on weakly pseudoconvexr com-

pact complex manifolds with boundary, Dissertation, Purdue University (1991).

. Cho, 8., Extension of complex structures on weakly pseudocenvex compact com-

plex manifolds with boundary, Math. Z. 211 (1992), 105-120.

. Cho, 8, A lower bound on the Kobayashi metric near a point of finile type in

C", The J. of Geom. Analysis 2, No 4 (1992), 317-325.

. Cho, S., Boundary behavior of the Bergman kernel function on some pseudo-

conver domawns in Cn, Transac. of AM.S. (to appear).

. D’Angelo, J., Real hypersurfaces, order of contact, and applications, Ann. of

Math. 115 (1982), 615-637.

. Diederich, K. and Fornaess, J., Proper holomorphic maps onto pseudoconver

domains with real-analytic boundary, Ann. of Math. 110 (1979), 575-592.

. Diederich, K., Fornaess, J., and Herbort, G., Boundary behavior of the Bergman

metric, Proc. Symposia in Pure Math. 41 (1982), 59-67.

Hahn, K. T., Inequalities between the Bergman metric and the Caratheodory
differential metric, Proc. Amer. Math. Soc. 68 (1978), 193-194.

Herbort, G., On the invariant differential metrics near pseuvdoconvez boundary
points where the Levi form has corank one, Nagoya Math. J. 130 (1993), 25-54.
Range, R. M., The Caratheodory metric and holomorphic maps on a class of
weakly pseudoconvezr domains, Pac. J. Math. 78 (1978), 173-189.

Department of Math. Education
Pusan National University, Pusan, 609-735, Korea
e-mail: cho@hyowon.cc.pusan.ac.kr



