ESTIMATES OF INVARIANT METRICS ON SOME PSEUDOCONVEX DOMAINS IN \mathbb{C}^n

SANGHYUN CHO

1. Introduction

In this paper we will estimate from above and below the values of the Bergman, Caratheodory and Kobayashi metrics for a vector X at z, where z is any point near a given point z_0 in the boundary of pseudoconvex domains in \mathbb{C}^n . Throughout this paper, Ω will be a smoothly bounded pseudoconvex domain in \mathbb{C}^n with smooth defining function r and $z_0 \in b\Omega$ is a point of finite type m in the sense of D'Angelo [7], and the Levi-form $\partial \overline{\partial} r(z)$ of $b\Omega$ has (n-2)-positive eigenvalues at z_0 . Note that the type m at z_0 is an even integer in this case. We first give the definition of each of the above metrics. Let X be a holomorphic tangent vector at a point z in Ω . Denote the set of holomorphic functions on Ω by $A(\Omega)$. Then the Bergman metric $B_{\Omega}(z;X)$, the Caratheodory metric $C_{\Omega}(z;X)$ and the Kobayashi metric $K_{\Omega}(z;X)$ are defined by

$$\begin{split} &C_{\Omega}(z;X) = \sup \left\{ |Xf(z)| : f \in A(\Omega), & \|f\|_{L^{\infty}\Omega} \le 1 \right\} \\ &K_{\Omega}(z;X) = \inf \{ 1/r : \exists f : D_r \subset \mathbb{C}^1 \to \mathbb{C}^n \text{ such that } f_* \Big(\frac{\partial}{\partial z} |_0 \Big) = X \} \\ &B_{\Omega}(z:X) = b_{\Omega}(z;X) / (K_{\Omega}(z,\bar{z}))^{\frac{1}{2}}, \end{split}$$

where D_r denotes the disc of radius r in \mathbb{C}^1 , and

$$\begin{split} K_{\Omega}(z,\bar{z}) = &\sup \; \{ |f(z)|^2 : f \in A(\Omega), \quad \|f\|_{L^2(\Omega)} \leq 1 \} \\ b_{\Omega}(z;X) = &\sup \; \{ |Xf(z)| : f \in A(\Omega), \quad f(z) = 0, \quad \|f\|_{L^2(\Omega)} \leq 1 \}. \end{split}$$

Received August 25, 1994.

¹⁹⁹¹ AMS Subject Classification: 32F15.

Key words: Invariant metrics, Bergman kernel function, finite 1-type, plurisub-harmonic functions.

This paper was partially supported by Non directed research fund, K.R.F.,1993 and GARC-KOSEF fund, 1994.

We may assume that $\partial r/\partial z_1 \neq 0$ in a small neighborhood U of z_0 . After a linear change of coordinates, we can find coordinate functions z_1, z_2, \ldots, z_n defined on U such that

$$L_1 = \frac{\partial}{\partial z_1},$$

$$L_j = \frac{\partial}{\partial z_j} + b_j \frac{\partial}{\partial z_1}, L_j r \equiv 0, \quad b_j(z_0) = 0, \quad j = 2, \dots, n,$$

which form a basis of $\mathbb{C}T(U)$ and satisfy

$$\partial \overline{\partial} r(z_0)(L_i, \overline{L}_j) = \delta_{ij}, \quad 2 \le i, j \le n-1,$$

where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ otherwise. For any integers j, k > 0, set

$$\mathcal{L}_{j,k}\partial\overline{\partial}r(z) = \underbrace{L_n \dots L_n}_{(j-1) \text{ times } (k-1) \text{ times}} \partial\overline{\partial}r(z)(L_n, \overline{L}_n),$$

and define

(1.1)
$$C_{l}(z) = \max\{|\mathcal{L}_{j,k}\partial\overline{\partial}r(z)|; j+k=l\},$$
$$\eta(z,\delta) = \min\{(\delta/C_{l}(z))^{1/l}: l=2,\ldots,m\}.$$

Let $X = b_1L_1 + b_2L_2 + \ldots + b_nL_n$ be a holomorphic tangent vector at z and set

(1.2)
$$M_{m}(z;X) = |b_{1}||r(z)|^{-1} + \sum_{k=2}^{n-1} |b_{k}||r(z)|^{-1/2} + |b_{n}| \sum_{l=2}^{m} |C_{l}(z)|^{1/l} |r(z)|^{-1/l}.$$

Then we can state the main result as follows

THEOREM 1. Let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^n and let $z_0 \in b\Omega$ be a point of finite type m in the sense of D'Angelo. Also assume that the Levi-form $\partial \overline{\partial} r(z)$ of $b\Omega$ has (n-2)-positive eigenvalues at z_0 . Then there exist a neighborhood U about z_0 and positive constants c and C such that for all $X = b_1L_1 + \ldots b_nL_n$ at $z \in U \cap \Omega$,

(1.3)
$$cM_m(z;X) \le B_{\Omega}(z;X)$$
, $C_{\Omega}(z;X)$, $K_{\Omega}(z;X) \le CM_m(z;X)$.

REMARK. Because $|C_m(z)| \ge c' > 0$ for all $z \in U \cap \Omega$, (1.2) says, in particular, that

$$\begin{split} B_{\Omega}(z;X), & C_{\Omega}(z;X), K_{\Omega}(z;X) \\ \gtrsim & (|b_1||r(z)|^{-1} + \sum_{k=2}^{n-1} |b_k||r(z)|^{-1/2} + |b_n||r(z)|^{-1/m} \end{split}$$

for a holomorphic vector field $X = b_1 L_1 + \ldots + b_n L_n$ at z.

Several authors found some results about these metrics for some pseudoconvex domains in \mathbb{C}^n , but in each case the lower bounds are different from the upper bounds [1,5,8,9,12]. In [2], Catlin got a result similar to above theorem in \mathbb{C}^2 , and this has motiviated the author to investigate the above theorem. To prove the theorem, we must get a complete geometric analysis near z_0 and this will be done by using the "maximal plurisubharmonic functions" constructed in [6]. In [10], K.T. Hahn got the following inequalities

(1.4)
$$C_{\Omega}(z;X) \leq B_{\Omega}(z;X), \quad K_{\Omega}(z;X).$$

Therefore the estimates for the lower bounds of $C_{\Omega}(z;X)$ will suffice for the lower bounds of $B_{\Omega}(z;X)$ and $K_{\Omega}(z;X)$. For upper bounds of $B_{\Omega}(z;X)$, we will use the following estimates for the Bergman kernel function $K_{\Omega}(z,\bar{z})$

(1.5)
$$K_{\Omega}(z,\bar{z}) \approx \sum_{l=2}^{m} |C_{l}(z)|^{2/l} |r(z)|^{-n-2/l},$$

which was shown by the author in [6].

Although we are employing some of the methods similar to those of Catlin in \mathbb{C}^2 -case, where he used estimates for the $\overline{\partial}$ -Neumann operator. we will show some technical theorems in detail to clarify the difference between \mathbb{C}^2 and \mathbb{C}^n case.

2. Pushing out the boundary and Bumping theorem

For each $z' \in U$, we take the biholomorphism $\Phi_{z'}^{-1}: \mathbb{C}^n \to \mathbb{C}^n$ which straightens $b\Omega$ near z_0 [6, Proposition 2.2]. That is, $\Phi_{z'}$ satisfies $\Phi_{z'}^{-1}(z') = 0$, $\Phi_{z'}^{-1}(z) = \zeta$, and

$$(2.1) r(\Phi_{z'}(\zeta)) = r(z') + Re\zeta_1 + \sum_{\alpha=2}^{n-1} \sum_{\substack{j+k \le m/2 \\ j,k > 0}} Re\left(b_{j,k}^{\alpha}(z')\zeta_n^j \overline{\zeta}_n^k \zeta_{\alpha}\right) + \sum_{\substack{j+k \le m \\ j,k > 0}} a_{j,k}(z')\zeta_n^j \overline{\zeta}_n^k + \sum_{\alpha=2}^{n-1} |\zeta_{\alpha}|^2$$

$$+ \sum_{\substack{j+k \le m \\ j,k > 0}} a_{j,k}(z')\zeta_n^j \overline{\zeta}_n^k + \sum_{\alpha = 2} |\zeta_{\alpha}|^2$$

$$+ \mathcal{O}\left(|\zeta_1||\zeta| + |\zeta''|^2|\zeta| + |z''||\zeta_n|^{m/2+1} + |\zeta_n|^{m+1}\right).$$

Set $\rho(\zeta) = r \circ \Phi_{z'}(\zeta)$, and set (2.2)

$$A_{l}(z') = \max\{|a_{j,k}(z')|; j+k=l\}, \quad 2 \le l \le m,$$

$$B_{l'}(z') = \max\{|b_{j,k}^{\alpha}(z')|; j+k=l', \quad 2 \le \alpha \le n-1, \}, \quad 2 \le l' \le m/2.$$

For each $\delta > 0$, we define $\tau(z', \delta)$ as follows;

(2.3)
$$\tau(z',\delta) = \min_{\substack{2 \le l \le m \\ 2 \le l' \le m/2}} \left\{ (\delta/A_l(z'))^{1/l}, \ (\delta^{1/2}/B_{l'}(z'))^{1/l'} \right\}.$$

Since $A_m(z_0) \ge c > 0$, it follows that $A_m(z') \ge c' > 0$ for all $z' \in U$ if U is sufficiently small. This gives the inequality,

$$\delta^{1/2} \lesssim \tau(z', \delta) \lesssim \delta^{1/m}, \ z' \in U.$$

REMARK 2.1. It was shown in [6, section 2] that $(\delta^{1/2}z'(B'_l(z')) \gg \tau(z',\delta)$ whenever $\delta > 0$ is sufficiently small. Hence the terms mixed with ζ_n and ζ_α , $\alpha = 2, \ldots, n-1$, would not be and important ones in (2.1) and (2.3) and hence $\tau(z',\delta) = \min \{(\delta/A_l(z'))^{1/l}; 2 \leq l \leq m\}$ for sufficiently small δ .

The definition of $\tau(z', \delta)$ easily implies that if $\delta' < \delta''$, then

$$(\delta'/\delta'')^{1/2}\tau(z',\delta'') \le \tau(z',\delta') \le (\delta'/\delta'')^{1/m}\tau(z',\delta'').$$

Because we are fixing z' in this section, we set $\tau_1 = \delta, \tau_2 = \ldots = \tau_{n-1} = \delta^{1/2}, \ \tau_n = \tau(z', \delta) = \tau$ and define

$$R_{\delta}(z') = \{ \zeta \in \mathbb{C}^n; |\zeta_k| < \tau_k, \ k = 1, 2, \dots, n \}, \text{ and } Q_{\delta}(z') = \{ \Phi_{z'}(\zeta); \zeta \in R_{\delta}(z') \}.$$

Then for $z \in Q_{\delta}(z')$, the author showed in [6, Proposition 2.7] that

(2.4)
$$\tau(z',\delta) \lesssim \eta(z,\delta) \lesssim \tau(z',\delta) \text{ and }$$
$$\eta(z,\delta) \approx \tau(z,\delta).$$

For $\epsilon > 0$, we let $\Omega_{\epsilon} = \{z : r(z) < \epsilon\}$ and set $S(\epsilon) = \{z : -\epsilon < r(z) < \epsilon\}$. In [6, Proposition 3.2], the author proved the following theorem which shows the existence of smooth plurisubharmonic functions on $\overline{\Omega}$ with "maximal Hessian" near $b\Omega$.

THEOREM 2.1. For all small $\delta > 0$, there is a plurisubharmonic function $\lambda_{\delta} \in C^{\infty}(\Omega_{\delta})$ with the following properties

- (i) $|\lambda_{\delta}(z)| \leq 1, z \in U \cap \Omega_{\delta}$.
- (ii) For all $L = \sum_{j=1}^{n} b_j L_j$ at $z \in U \cap S(\delta)$,

$$\partial\overline{\partial}\lambda_{\delta}(z)(L,\overline{L})\approx \delta^{-2}|b_1|^2+\delta^{-1}\sum_{k=2}^{n-1}|b_k|^2+\tau^{-2}|b_n|^2,$$

(iii) If $\Phi_{z'}$ is the map associted with a given $z' \in U \cap S(\delta)$, then for all $\zeta \in R_{\delta}(z')$ with $|\rho(\zeta)| < \delta$,

$$|D^{\alpha}(\lambda_{\delta} \circ \Phi_{z'})(\zeta)| \lesssim C_{\alpha} \delta^{-\alpha_{n}} \delta^{-1/2(\alpha_{2}+...+\alpha_{n-1})} \tau^{-\alpha_{n}}$$
where $\alpha = (\alpha_{1}, \ldots, \alpha_{n})$.

With this family of functions λ_{δ} , we shall construct for each $z' \in U \cap b\Omega$ and each small $\delta > 0$, a domain (locally defined in U) $\Omega_{z',\delta}$ which contains Ω such that the boundary of $\Omega_{z',\delta}$ is pushed out as far as possible, given the constraints that $d(z',b\Omega_{z',\delta}) < \delta$ and that $b\Omega_{z',\delta}$ is pseudoconvex. Since z' will be fixed in this section, we will work in ζ -coordinates defined by $\Phi_{z'}(\zeta) = z$.

Set $\rho(\zeta) = r(\Phi_{z'}(\zeta))$ and set $U' = \{\zeta : \Phi_{z'}(\zeta) \in U\}$. For all small s and $\delta > 0$, define

$$(2.5) J_{\delta}(z',\zeta) = \left[\delta^2 + |\zeta_1|^2 + \sum_{\alpha=2}^{n-1} |\zeta_{\alpha}|^4 + \sum_{l=2}^m A_l(z')^2 |\zeta_n|^{2l}\right]^{1/2}$$

and

$$(2.6) W_{s,\delta}(z') = \{ \zeta \in U' : |\rho(\zeta)| < sJ_{\delta}(\zeta) \}.$$

NOTE. From Remark 2.1, and (2.3), the terms $B_{l'}(z')^2 |\zeta_n|^{2l'} |\zeta_\alpha|^2$, $2 \le l' \le m/2$ will be absorbed into $\sum_{l=2}^m A_l(z')^2 |\zeta_n|^{2l}$ in the definition of $J_{\delta}(z',\zeta)$.

Set $J_{\delta}(z',\zeta) = J_{\delta}(\zeta)$ for the convenience.

PROPOSITION 2.2. For each $z' \in U \cap b\Omega$ and each small $\delta > 0$, there exists a small real-valued function $H_{z',\delta}(\zeta)$ defined in $W_{s,\delta}(z')$ (where s is a small constant independent of z' and δ) such that

- (i) $-J_{\delta}(\zeta) \approx H_{z',\delta}(\zeta)$,
- (ii) for any $L = b_1 L'_1 + b_2 L'_2 + \ldots + b_n L'_n$,

$$\partial\overline{\partial} H_{z',\delta}(L,\overline{L})(\zeta) \approx J_{\delta}(\zeta) \left[\frac{|b_1|^2}{(J_{\delta}(\zeta))^2} + \sum_{k=2}^{n-1} \frac{|b_k|^2}{(J_{\delta}(\zeta))} + \frac{|b_n|^2}{\tau(z',J_{\delta}(\zeta))^2} \right],$$

(iii) for any $L = b_1 L'_1 + \ldots + b_n L'_n$ at ζ ,

$$|LH_{z',\delta}| \lesssim J_{\delta}(\zeta) \left(\frac{|b_1|}{J_{\delta}(\zeta)} + \sum_{k=2}^{n_1} \frac{|b_k|}{(J_{\delta}(\zeta))^{1/2}} + \frac{|b_n|}{\tau(z',J_{\delta}(\zeta))} \right)$$

where $L'_{k} = (\Phi_{z'}^{-1})L_{k}, k = 1, 2, \dots, n.$

Proof. Set $N_1 = [log_2(1/\delta)]$. Let $D_R = \{\zeta \in \mathbb{C}^n : |\zeta_i| < R, i = 1, 2, \ldots, n\}$, and let $\psi \in C_0^{\infty}(D_2 - D_{1/4})$ be a function that satisfies $\psi(\zeta) = 1$ for $\zeta \in D_1 - D_{1/2}$. For all $k, 1 \le k < N_1$, set

$$\psi_k(\zeta) = \psi\left(2^k \zeta_1, 2^{k/2} \zeta_2, \dots, 2^{k/2} \zeta_{n-1}, \tau(z', 2^{-k})^{-1} \zeta_n\right),$$

and for $k = N_1$, set

$$\psi_{N_1}(\zeta) = \phi\left(2^{N_1}\zeta_1, 2^{N_1/2}\zeta_2, \dots, 2^{N_1/2}\zeta_{n-1}, \tau(z', 2^{-N_1})^{-1}\zeta_n\right),\,$$

where $\phi \in C_0^{\infty}(D_2)$ satisfies $\phi(\zeta) = 1$ for $\zeta \in D_1$. If one combines (2.3), (2.5) nd the fact that $(\delta^{1/2}/B_{l'}(z'))^{1/l'} \gg \tau(z', \delta)$ for $l' = 2, \ldots, m/2$, one obtains that

(2.7)
$$J_{\delta}(\zeta) \approx 2^{-k}, \quad \zeta \in \text{supp } \psi_{k}.$$

For each $\delta > 0$, set $\lambda'_{\delta} = \lambda_{\delta} \circ \Phi_{z'}$, where λ_{δ} is the plurisubharmonic function as in Theorem 2.1. Choose N_0 so that $\lambda_{2^{-k}t}$ is well-defined for all $\zeta \in \text{supp } \psi_k$ whenever $k \geq N_0$, and set

$$H_{z',\delta}(\zeta) = \sum_{k=N_0}^{N_1} 2^{-k} \psi_k(\zeta) (\lambda'_{2^{-k}t}(\zeta) - 2).$$

Then $H_{z',\delta}$ is well-defined (fixed finite sum independent of z' and δ). From (2.5), (2.7) and from the fact that $H_{z',\delta}(\zeta) \approx -2^{-k}$ for $\zeta \in \text{supp } \psi_k$, property (i) follows. Also the major part of the Hessian of $H_{z',\delta}$ will be $\partial \overline{\partial} \lambda_{2^{-k}t}(\zeta)$ and other error terms will be absorbed into $\partial \overline{\partial} \lambda_{2^{-k}t}(\zeta)$ for sufficiently small t. This fact together property (i) proves properties (ii) and (iii). \square

Set
$$\Omega_{z'} = \Phi_{z'}^{-1}(\Omega)$$
 and set $\Omega_{z',\epsilon} = \{\zeta \in \mathbb{C}^n : \rho(\zeta) < \epsilon\}.$

PROPOSITION 2.3. For all small $\delta > 0$, there exist a function $g_{\delta}(\zeta)$ and constants b > 0 and C > 0 so that

- (i) g_{δ} is defined and plurisubharmonic on $\Omega_{z',b\delta}$,
- (ii) supp $g_{\delta} \subset R_{C\delta}(z') \cap \Omega_{z',b\delta}$,
- (iii) $|g_{\delta}(\zeta)| \leq 1, \zeta \in \Omega_{z',b\delta}$,
- (iv) if $L = b_1 L'_1 + \ldots + b_n L'_n$ at $\zeta \in R_{b\delta}(z')$, then

$$\partial\overline{\partial}g_{\delta}(L,\overline{L})(\zeta)\gtrsim \delta^{-2}|b_1|^2+\delta^{-1}\sum_{k=1}^{n-1}|_k|^2+ au(z',\delta)^{-2}|b_n|^2,$$
 and

(v)
$$|D^{\alpha}g_{\delta}(\zeta)| \lesssim C_{\alpha}\delta^{-\alpha_1}\delta^{-1/2(\alpha_2+\ldots+\alpha_{n-1})}\tau^{-\alpha_n}, \ \zeta \in R_{C\delta}(z'),$$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$.

Proof. If we use Theorem 2.1, the proof of this theorem will be very close to that o \mathbb{C}^2 -case of Proposition 4.2 in [2] and hence it will be omitted here.

With Proposition 2.2, we can prove the following theorem which shows that the boundary of $\Omega_{z'}$ can be pushed out essentially as far as possible.

THEOREM 2.4. For each sufficiently small $\delta > 0$, there isone parameter family of "maximal pushed-out" pseudoconvex domains $\{\Omega_{z',\delta}^{\epsilon}\}_{\epsilon>0}$ which contain $\Omega_{z'}$ near the origin.

Proof. Let U_1' be a small neighborhood of the origin with $U_1' \subset \subset U' = \Phi_{z'}^{-1}(U)$. Then one has $|dH_{z',\delta}(\zeta)| \lesssim 1$ for $\zeta \in W_{s,\delta}(z')$ by the property (iii) of Theorem 2.2. Hence for all small $\epsilon > 0$, the function

$$\rho_{z',\delta}^{\epsilon}(\zeta) = \rho(\zeta) + \epsilon H_{z',\delta}(\zeta)$$

satisfies $\frac{\partial \rho_{z',\delta}^{\epsilon}}{\partial \zeta_1} \neq 0$ in U_1' and therefore form a family of defining functions of hypersurfaces $\{\zeta: \rho_{z'}^{\epsilon}(\zeta)=0\}$ in $W_{s,\delta}(z')$. For $\zeta' \in b\Omega_{z'} \cap U_1'$, let ζ'' be the unique projection of ζ' onto $\{\zeta: \rho_{z',\delta}^{\epsilon}(\zeta)=0\} = b\Omega_{z',\delta}^{\epsilon}$. Suppose $L''\rho_{z'}^{\epsilon}(\zeta'')=0$ with |L''|=1. If one writes $L''=eL_1'+s_2L_2'+\ldots+s_nL_n'=eL_1'+T'$, then $L''\rho_{z'}^{\epsilon}(\zeta'')=0$ implies that

$$eL'_{1}(\rho + \epsilon H_{z',\delta})(\zeta'') + T'(\rho + \epsilon H_{z',\delta})(\zeta'')$$

$$= e(L'_{1}\rho + \epsilon L'_{1}H_{z',\delta})(\zeta'') + \epsilon T'H_{z',\delta}(\zeta'') = 0,$$

which shows that

$$\begin{split} |e| &\approx \epsilon |T' H_{z',\delta}(\zeta'')| \\ &\lesssim \epsilon J_{\delta}(\zeta'') \left(\sum_{k=2}^{n-1} |s_k| J_{\delta}(\zeta'')^{-1/2} + \tau(z',J_{\delta}(\zeta''))^{-1} |s_n| \right). \end{split}$$

Therefore we may assume that $|T'| \geq /2$ provided that $|\zeta''|$ is sufficiently small (i.e., U' is sufficiently small). Because $\partial \overline{\partial} \rho(T', \overline{T}')(\zeta'') \geq$

0, one has

$$\begin{split} &\partial \overline{\partial} \rho(L'', \overline{L}'')(\zeta'') = \partial \overline{\partial} \rho(T' + \epsilon L_1, \overline{T' + \epsilon L_1})(\zeta'') \\ &= \partial \overline{\partial} \rho(T', \overline{T}')(\zeta'') + \mathcal{O}(\epsilon) \\ &\geq -\epsilon J_{\delta}(\zeta'') \left(\tau(z', J_{\delta}(\zeta''))^{-1} |s_n| + \sum_{k=2}^{n-1} |s_k| J_{\delta}(\zeta'')^{-1/2} \right). \end{split}$$

Since $|\zeta'' - \zeta'| \lesssim J_{\delta}(\zeta')$, one sees that $J_{\delta}(\zeta') \approx J_{\delta}(\zeta'')$. If one combines this fact and $|T'| \geq 1/2$, and the property (ii) of Proposition 2.2, one gets,

$$\begin{split} \partial \overline{\partial} \rho_{z',\delta}^{\epsilon}(L'', \overline{L}'') \\ &\geq -C \epsilon J_{\delta}(\zeta^{prime}) \left(\tau(z', J_{\delta}(\zeta'))^{-1} |s_{n}| + \sum_{k=2}^{n-1} |s_{k}| J_{\delta}(\zeta')^{-1/2} \right) \\ &+ \epsilon c J_{\delta}(\zeta') \left(J_{\delta}(\zeta')^{-2} |e|^{2} + \sum_{k=2}^{n-1} |s_{k}|^{2} J_{\delta}(\zeta')^{-1} + \tau^{-2} |s_{n}|^{2} \right) \geq 0 \end{split}$$

provided that $J_{\delta}(\zeta')$ is sufficiently small (or equally if $|\zeta'|$ is sufficiently small). This completes the proof. \square

Now we choose $\epsilon_0 > 0$ so that

$$\sup \{ \rho(\zeta) : \zeta \in R_{C\delta}(z') \text{ and } \rho_{z'}^{\epsilon_0}(\zeta \le 0) < b\delta,$$

where b is the small number as in Proposition 2.3. This $\epsilon_0 > 0$ can be chosen independently of z' and δ , and we set $\rho_{z'}(\zeta) = \rho_{z'}^{\epsilon_0}(\zeta)$. Then the function $g_{\delta}(\zeta)$ (as in Proposition 2.3) is well defined on the set $\{\zeta: \rho_{z'}(\zeta) < 0\} = \Omega_{z',\delta}$. For ζ' near 0, define a polydisc $P_a(\zeta')$ by

(2.8)
$$P_{a}(\zeta') = \{ \zeta \in \mathbb{C}^{n} : |\zeta_{1} - \zeta_{1}'| < aJ_{\delta}(\zeta'), \ |\zeta_{n} - \zeta_{n}'| < \tau(z', aJ_{\delta}(\zeta')), \ |\zeta_{k} - \zeta_{k}'| < (aJ_{\delta}(\zeta'))^{1/2}, \ k = 2, \dots, n-1 \}.$$

PROPOSITION 2.5. There exist constants a>0 and $d_1>0$ (independent of z',ζ' and δ) so that if $\zeta'\in\Omega_{z'}$ and $|\zeta'|< d_1$, then $\rho_{z'}(\zeta)<0$ for $\zeta\in P_a(\zeta')$.

Proof. We may assume that $\zeta' \in b\Omega_{z'}$ (this will be the worst case). If a is sufficiently small (independent of z' and δ), then

(2.9)
$$J_{\delta}(\zeta) \approx J_{\delta}(\zeta'), \quad \zeta \in P_{a}(\zeta').$$

From the property (i) of Proposition 2.2, and with (2.9), there exists a small constant c > 0, such that

$$(2.10) H_{z',\delta}(\zeta) \le -cJ_{\delta}(\zeta'), \quad \zeta \in P_{a}(\zeta').$$

By a simple Taylor's theorem argument, one can show that

$$(2.11) |\rho(\zeta)| \le CaJ_{\delta}(\zeta'), \quad \zeta \in P_a(\zeta').$$

Since $\rho'_z(\zeta) = \rho(\zeta) + \epsilon_0 H_{z',\delta}(\zeta)$, using (2.10) and (2.11) we have $\rho'_z(\zeta) < 0$ if a is chosen so that $a < c\epsilon_0/C$. This completes th proof. \square

The existence of the following two-sided bumping family of pseudo-convex domains was shown by the author in [4].

THEOREM 2.6. Let Ω be a smoothly bounded pseudoconvex domain and let $z_0 \in b\Omega$ be a point of finite type. Then there is a neighborhood V of z_0 and a family of smoothly bounded pseudoconvex domains $\{\Omega_t\}_{-1 \le t \le 1}$ satisfying the following propoerties;

- (i) $\Omega_0 = \Omega$,
- (ii) $\Omega_{t_1} \subset \Omega_{t_2}$ if $t_1 < t_2$,
- (iii) $\{\partial \Omega_t\}_{-1 \leq t \leq 1}$ is a C^{∞} family of real hypersurfaces in \mathbb{C}^n and the points of $\partial \Omega_t \cap V$ are finite type,
- (iv) $D_t D_{-t} \subset V$ for all t.

REMARK 2.2.

- (1) Property (iii) means that $\partial \Omega_t \longrightarrow \partial \Omega_{t_0}$ in C^{∞} -topology as t goes to t_0 .
- (2) There is a neighborhood V of $z_0 \in b\Omega$ such that the types of the points of $V \cap b\Omega$ are bounded and Theorem 2.6 holds on that neighborhood [3].

(3) From the construction of Φ_{z'} and ρ'_z(ζ), we can choose d₁ > 0 and a neighborhood U ⊂ C V of z₀ (independent of z') so that ρ'_z is defined in {ζ: |ζ| < d₁} and satisfies all the properties in this section for all z' ∈ bΩ ∩ U.

Set $\Omega_{t,z'} = \{\zeta \in \mathbb{C}^n : \Phi_{z'}(\zeta) \in \Omega_t\}$, where $\{\Omega_t\}$ is the family of domains as in Theorem 2.6. Let us denote $J_{\delta}(\zeta) = J_{\delta}(\zeta, z')$ to clarify the dependence of z'. Set

$$\Omega_{z',\delta} = \{\zeta : |\zeta| < d_1 \text{ and } \rho'_z(\zeta) < 0\} \text{ and } b\Omega_{z',\delta} = \{\zeta : |\zeta| < d_1 \text{ and } \rho'_z(\zeta) = 0\}.$$

The construction of ρ'_z in this section shows that if $\zeta \in \overline{\Omega}_{z'}$ and if $d_1/2 < |\zeta| < d_1$, then

$$d(\zeta, b\Omega_{z',\delta}) \gtrsim J_{\delta}(\zeta, z').$$

Since $A_m(z') \gtrsim 1$ for all $z' \in U$, it follows that $J_{\delta}(\zeta, z') \gtrsim 1$ when $d_1/2 < |\zeta| < d_1$. Therefore there is a constant $c_1 > 0$ so that

$$d(\zeta, b\Omega_{z',\delta}) \ge c_1,$$

for $\zeta \in U \cap b\Omega$ and $d_1/2 < |\zeta| < d_1$. Choose $t = t_0$ sufficiently small so that

$$d(\zeta, b\Omega_{t_0,z'}) < c_1/2$$
 if $d_1/2 < |\zeta| < d_1$.

Now define a domain $\tilde{\Omega}_{z',\delta}$ by

$$\tilde{\Omega}_{z',\delta} = \{ \zeta \in \Omega_{t_0,z'} : |\zeta| \ge d_1 \} \cup \{ \Omega_{t_0,z'} \cap \Omega_{z',\delta} \}.$$

Since pseudoconvexity is a local condition, $\tilde{\Omega}_{z',\delta}$ is a pseudoconvex domain. By combining the properties of $\Omega_{z',\delta}$ and $\Omega_{t_0,z'}$, we obtain

PROPOSITION 2.7. For all z' near z_0 and all δ , $0 < \delta < \delta_0$, the domai $\tilde{\Omega}_{z',\delta}$ has the following properties;

- (i) $\tilde{\Omega}_{z',\delta}$ is a bounded pseudoconvex domain that contains $\Omega_{z'}$,
- (ii) the function g_{δ} of Proposition 2.3 is defined on $\tilde{\Omega}_{z',\delta}$,
- (iii) there is a constant a > 0 so that for all $\zeta' \in \Omega_{z'}$ with $|\zeta'| < d_1$, $P_a(\zeta') \subset \tilde{\Omega}_{z',\delta}$,
- (iv) in the region $|\zeta| > d_1/2$, the boundaries $b\tilde{\Omega}_{z',\delta}$ are independent of δ and depend smoothly on z',
- (v) in the region $\{\zeta: d_1/2 < |\zeta| < d_1\}$, the boundaries $b\Omega_{z',\delta}$ are of finite type, uniformly in z', and δ .

3. Metric Estimates

For the lower bounds, it is enough to find lower bounds for $C_{\Omega}(z;X)$ because of (1.4). Assume that $r(z) = -b\delta/2$ and let z' be the projection of z onto $b\Omega$, and $\Phi_{z'}$ be its associated map. Here b>0 is the number as in Proposition 2.3. Set $\zeta^{\delta}=(-b\delta/2,0,\ldots,0)=(\zeta_1^{\delta},\zeta_2^{\delta}\ldots,\zeta_n^{\delta})$. Then by (2.1), (2.2) and (2.3), there is a small constant $c\leq b$ such that the polydisc (3.1)

$$B = \{ \zeta : |\zeta_1 + b\delta/2| < c\delta, |\zeta_n| < c\tau(z', \delta), |\zeta_k| < c\delta^{1/2}, \ 2 \le k \le n - 1 \},$$

is contained in $\Omega_{z'}$ and hence the properties (iv) and (v) of Proposition 2.3 hold on B. Let $Y = (\Phi_{z'}^{-1})_*X = b_1L'_1 + \ldots + b_nL'_n$ be a vector at ζ_{δ} , where $L'_i = (\Phi_{z'}^{-1})_{*,i}$ for $i = 1, 2, \ldots, n$. From the coordinate changes as in Proposition 2.2 in [6], one has

$$(3.2) L'_{1} = \frac{\partial}{\partial \zeta_{1}},$$

$$L'_{k} = \sum_{j=2}^{n-1} \overline{P}_{kj} \lambda_{j}^{-1/2} \frac{\partial}{\partial \zeta_{j}} - (\frac{\partial \rho}{\partial \zeta_{1}})^{-1}$$

$$\sum_{j=2}^{n-1} \overline{P}_{kj} \lambda_{j}^{-1/2} \frac{\partial \rho}{\partial \zeta_{j}} \frac{\partial}{\partial \zeta_{1}}, \ 2 \le k \le n-1,$$

$$L'_{n} = \frac{\partial}{\partial \zeta_{n}} + b(\zeta) \frac{\partial}{\partial \zeta_{1}},$$

where $b(\zeta) = -\left(\frac{\partial \rho}{\partial \rho_1}\right)^{-1} \left(\frac{\partial \rho}{\partial \zeta_n}\right)$ and $P = (P_{kj})$ is a unitary matrix, and λ_j 's are positive eigenvalues of $\partial \overline{\partial} r(z')$, $j = 2, \ldots, n-1$. We may assume that $\lambda_j \geq c > 0$ on U for $j = 2, \ldots, n-1$. Set $\tau_1 = \delta$, $\tau_n = \tau(z', \delta)$, $\tau_k = \delta^{1/2}$, $k = 2, \ldots, n-1$. Let k_0 be the minimum number such that

(3.3)
$$|b_{k_0}|\tau_{k_0}^{-1} = \max\{|b_k|\tau_k^{-1}: k=1,2,\ldots,n\}.$$

Set $v(\zeta) = \delta^{-1}(\zeta_1 + b\delta/2)$ if $k_0 = 1$, $v(\zeta) = \tau^{-1}\zeta_n$ if $k_0 = n$, and set $v(\zeta) = \delta^{-1/2} \sum_{j=2}^{n-1} P_{k_0 j} \lambda_j^{1/2} \zeta_j$ for $2 \le k_0 \le n-1$. Since we may assume

that $c \leq 1$ and $\lambda_j \leq 1$, we have the inequality $\sup_{B} |v| \leq 1$. From the expansion in (2.1), one can see that $\frac{\partial \rho}{\partial \zeta_j}(\zeta^b) = 0, \ j = 2, \ldots, n$, and hence from (3.2),

(3.4)
$$|Yv(\zeta^{\delta})| = \max\{|b_{|}\tau_{k}^{-1}: k = 1, 2, \dots, n\},\$$

provided that δ is sufficiently small. Set $\phi(\zeta) = g_{\delta}(\zeta) + |\zeta|^2$ and set $\lambda(\zeta) = \chi(\phi(\zeta))$, where $\chi(t)$ is a smooth convex increasing function with $\chi'(t) \geq 1$ and g_{δ} is the function as in Proposition 2.3. Using the standard $\overline{\partial}$ -estimates on $\tilde{\Omega}_{z',\delta}$ with weight $e^{-\lambda(\zeta)}$, and from the estimate $\sum_{i,j=1}^{n} \frac{\partial^2 \phi}{\partial \zeta_i \partial \overline{\zeta_j}}(\zeta) t_i \overline{t}_j \gtrsim \sum_{j=1}^{n} |t_i|^2 \tau_i^{-2}$ for $\zeta \in B$, one has for any $g = \sum_{i=1}^{n} g_i \ d\overline{\zeta}_i \in D(T^*) \cap D(S)$ with Sg = 0,

(3.5)
$$\int_{\tilde{\Omega}_{x',\delta}-B} |g|^2 e^{-\lambda} dV + \int_B \sum_{i=1}^n \tau_i^{-2} |g_i|^2 e^{-\lambda} dV \lesssim ||T^*g||_{\lambda}^2,$$

where T^* and S are densely defined operators induced from $\overline{\partial}^*$ and $\overline{\partial}$. Suppose $f = \sum_{i=1}^n f_i d\overline{\zeta}_i$ satisfies Sf = 0. Then from standard theory of $\overline{\partial}$ and (3.5), there is $u \in L^2_{0,0}(\tilde{\Omega}_{z',\delta},\lambda)$ (=weighted L^2 -space in $\tilde{\Omega}_{z',\delta}$) such that $\overline{\partial}u = f$ in weak sense) and,

(3.6)
$$||u||_{\lambda}^{2} \lesssim \int_{\tilde{\Omega}_{x',\delta}-B} |f|^{2} e^{-\lambda} + \int_{B} \sum_{i=1}^{n} \tau_{i}^{2} |f_{i}|^{2} e^{-\lambda} dV.$$

For $c \geq d > 0$, set $B_d = \{\zeta : |\zeta_i - \zeta_i^{\delta}| < d\tau_i, i = 1, 2, \dots, n\}$. Since $\sum_{i,j=1}^n \frac{\partial^2 \phi}{\partial \zeta_i \partial \overline{\zeta_j}} t_i \overline{t_j} \gtrsim \sum_{i=1}^n \tau_i^{-2} |t_i|^2$ on B, there is a small constant d > 0 (independent of τ_1, \dots, τ_n) so that

(3.7)
$$\phi(\zeta) \ge Re \ h(\zeta) + d \sum_{i=1}^n \tau_i^{-2} |\zeta_i - \zeta_i^{\delta}|^2, \quad \zeta \in B_d,$$

where

$$h(\zeta) = 2\sum_{i=1}^{n} \frac{\partial \phi}{\partial \zeta_{i}}(\zeta^{\delta})(\zeta_{i} - \zeta_{i}^{\delta}) \sum_{i,j=1}^{n} \frac{\partial^{2} \phi}{\partial \zeta_{i} \partial \zeta_{j}}(\zeta^{\delta})(\zeta_{i} - \zeta_{i}^{\delta})(\zeta_{j} - \zeta_{j}^{\delta}).$$

Let $\psi \in C_0^{\infty}(U)$, where U is the unit polydisc in \mathbb{C}^n such that $\psi(\zeta) = 1$ if $|\zeta_i| \leq 1/2, i = 1, 2, \dots, n$. From (3.7), we conclude that if

$$\psi_d(\zeta) = \psi\left(\frac{\zeta_1 + b\delta/2}{d\tau_1}, \frac{\zeta_2}{d\tau_2}, \dots, \frac{\zeta_n}{d\tau_n}\right),$$

and if $a = nd^3/8$, then

$$(3.8) Re \ h(\zeta) \le -a, \text{ for } \zeta \in \{\zeta : \phi(\zeta) \le a\} \cap \text{supp } \overline{\partial} \psi_d.$$

Let χ be a smooth convex increasing function that satisfies $\chi(t) = 0$ for $t \le a/2$ and $\chi''(t) > 0$ for t > a/2. Now define

$$\lambda_s(\zeta) = \phi(\zeta) + s^2 \chi(\phi(\zeta))$$

and set

$$\alpha_s = \overline{\partial}(\psi_d v e^{sh}) = v e^{sh} \overline{\partial} \psi_d = \sum_{i=1}^n \alpha_{s,i} d\overline{\zeta}_i.$$

Since $\left|\frac{\partial \psi_a}{\partial \zeta_i}\right| \lesssim \tau_i^{-1}$, it follows that $\alpha_s = \sum \alpha_{s,i} d\overline{\zeta}$ satisfies

$$(3.9) \qquad \int_{B} \sum_{i=1}^{n} \tau_{i}^{2} |\alpha_{s,i}|^{2} e^{-\lambda_{s}} dV \lesssim \int_{\text{supp } \overline{\partial} \psi_{d}} e^{2sReh - \phi - s^{2}\chi(\phi)} dV.$$

Suppose $\phi(\zeta) \geq 0$. Then $\chi(\phi(\zeta)) \geq \chi(a) > 0$, so the s^2 -term is predominant. If $\phi(\zeta) \leq a$ and $\zeta \in \text{supp } \overline{\partial} \psi_d$, then $Re\ h(\zeta) \leq -a$ by (3.8). So the integrand in the integral on the right-hand side of (3.9) approaches to zero uniformly as s converges to infinity. Hence from (3.6) and (3.9), we conclude that for any $\epsilon_0 > 0$, there exists $s_0 > 0$ (independent of τ_1, \ldots, τ_n) and a function u_{s_0} so that $\overline{\partial} u_{s_0} = \alpha_{s_0}$ and

$$\begin{split} \int_{\tilde{\Omega}_{z',\delta}} |u_{s_0}|^2 e^{-\lambda_{s_0}} dV &\lesssim \int_B \sum_{i=1}^n \tau_i^2 |\alpha_{s_0,i}|^2 e^{-\lambda_{s_0}} dV \\ &\lesssim \int_{\text{supp } \overline{\partial} \psi_d} \epsilon_0 dV \lesssim \epsilon_0 \prod_{i=1}^n \tau_i^2. \end{split}$$

From the property (v) of Proposition 2.3, there is e > 0 (independent of z' and δ) so that $\phi(\zeta) < a/2$ for all $z \in B_e = \{\zeta : |\zeta_i - \zeta_i^{\delta}| < e\tau_i, i = 1, 2, \ldots, n\}$. Therefore $\lambda_s(\zeta)$ is independent of s for $\zeta \in B_e$ and hence u_{s_0} is holomorphic on B_e and satisfy

$$\begin{split} \left| \frac{\partial u_{s_0}}{\partial \zeta_k}(\zeta^{\delta}) \right|^2 &\lesssim \tau_k^{-2} \left(\prod_{j=1}^n \tau_j^{-2} \right) \int_{B_{\epsilon}} |u_{s_0}| e^{-\lambda_{s_0}} dV \\ &\lesssim \tau_k^{-2} \left(\prod_{j=1}^n \tau_j^{-2} \right) \left(\epsilon_0 \prod_{j=1}^n \tau_j^2 \right) = \epsilon_0 \tau_k^{-2}, \end{split}$$

for k = 1, 2, ..., n. Therefore it follows from (3.2) that

$$|Xu_{s_0}(\zeta^{\delta})| \lesssim \sqrt{\epsilon_0} \sum_{k=1}^n |b_k| \tau_k^{-1} \leq n \sqrt{\epsilon_0} \max \{|b_k| \tau_k^{-1}: k=1,2,\ldots,n\}.$$

Set $f = v\psi_d e^{s_0 h} - u_{s_0}$. Then f is holomorphic and from (3.4), it follows that

$$(3.11) |Yf(\zeta^{\delta})| \gtrsim \max\{|b_k|\tau_k^{-1}: k = 1, 2, \dots, n\},\$$

provided that ϵ_0 is sufficiently small.

Let us assume, for a moment, that $\sup_{\overline{\Omega}_{z'}} |f| \leq C$, where C is independent of z' and δ . Then (3.11) and the definition of Caratheodory metric shows that

$$(3.12) C_{\Omega_{z'}}(Y;\zeta^{\delta}) \geq C_{\tilde{\Omega}_{z',\delta}}(Y;\zeta^{\delta}) \gtrsim \max\{|b_k|\tau_k^{-1}: k=1,2,\ldots,n\}.$$

On the other hand, the polydisc B about ζ^{δ} lies in $\Omega_{z'}$. So one can easily obtain that

$$(3.13) C_{\Omega_{z'}}(\zeta^{\delta}; Y) \leq C_B(\zeta^{\delta}; Y) = \max\{|b_k|\tau_k^{-1}: k = 1, 2, \dots, n\}.$$

From (1.1), (1.2), (2.3) and (2.4), we have

$$\max\{|b_k|\tau_k^{-1}: k = 1, 2, \dots, n\} \approx M_m(z; X)$$

and hence from the invariant property of Caratheodory metric, and with (3.12), (3.13), one has

(3.14)
$$C_{\Omega}(z;X) = C_{\Omega_{z'}}(\zeta^{\delta};Y) \approx M_m(z;X).$$

To show that $\sup_{\overline{\Omega}_{z'}}|f| \leq C$, we use the fact that f is holomorphic in a larger domain $\widetilde{\Omega}_{z',\delta}$. Assume $\zeta \in \overline{\Omega}_{z'}$ and $|\zeta| < d_1$. Then from Proposition 2.7, one can see that $P_a \subset \widetilde{\Omega}_{z',\delta}$. Since $|v\psi_d e^{s_0h}| \lesssim 1$ and from the estimate (3.10), it follows that $\int_{P_a(\zeta)} |f|^2 dV \lesssim \prod_{j=1}^n \tau_j^2$, and hence

$$|f(\zeta)| \lesssim (Vol(P_a(\zeta))^{-1} \int_{P_a(\zeta)} |f|^2 dV \lesssim 1,$$

because $Vol(P_a(\zeta)) \gtrsim \prod_{j=1}^n \tau_j^2$. When $|\zeta| \geq d_1$, we use the Kohn's global regularity theory and some cut-off functions as Catlin did in [2]. Therefore we proved that $\sup_{\overline{\Omega}_z} |f| \lesssim 1$ and hence (3.14) has been proved.

To obtain an upper ound for the Bergman metric, we note that $\Omega_{z'}$ contains the polydisc B about ζ^{δ} . Thus by elementary estimates, one has for any $f \in L^2(\Omega_{z'}) \cap A(\Omega_{z'})$,

$$\left| \frac{\partial f}{\partial \zeta_k}(\zeta^{\delta}) \right| \lesssim \tau_k^{-1} \prod_{j=1}^n \tau_j^{-1} \|f\|_{L^2(\Omega_{z'})},$$

for $k=1,2,\ldots,n$. From (2.1) and (3.2), it follows that the coefficient $b(\zeta)$ of $\frac{\partial}{\partial \zeta_1}$ in L'_n satisfies $|b(\zeta^{\delta})| \lesssim \delta$ and $|\frac{\partial \rho}{\partial \zeta_j}(\zeta^{\delta})| \lesssim \delta^{1/2}$, for $j=2,\ldots,n-1$. Therefore, if $Y=\sum_{k=1}^n b'_{k_k}$ is a vector at ζ^{δ} , then

(3.15)
$$b_{\Omega_{z'}}(\zeta^{\delta}; Y) \lesssim \left(\sum_{k=1}^{n} |b_k| \tau_k^{-1}\right) \prod_{j=1}^{n} \tau_j^{-1}.$$

In [6], the author showed that

(3.16)
$$K_{\Omega_{z'}}(\zeta^{\delta}, \overline{\zeta}^{\delta}) \approx \prod_{i=1}^{n} \tau_{j}^{-2}.$$

Combining (3.15), (3.16) and from the definition of $B_{\Omega}(z;X)$, it follows that

$$B_{\Omega}(z;X) = B_{\Omega_{z'}}(\zeta^{\delta};Y) \lesssim \sum_{k=1}^{n} |b_k| \tau_k^{-1},$$

and hence one has

(3.17)
$$C_{\Omega}(z;X) \approx B_{\Omega}(z;Y) \approx M_m(z;X).$$

To show $K_{\Omega}(z;X) \approx M_m(z;X)$, we set

$$a_{k} = -\left(\frac{\partial \rho}{\partial \zeta_{1}}(\zeta^{\delta})\right)^{-1} \sum_{j=2}^{n-1} \overline{P}_{kj} \lambda_{j}^{-1/2} \frac{\partial \rho}{\partial \rho_{j}}(\zeta^{\delta}), \quad k = 2, \ldots, n-1,$$

and set

$$b_0 = -\left(\frac{\partial \rho}{\partial \zeta_1}(\zeta^{\delta})\right)^{-1} \left(\frac{\partial \rho}{\partial \zeta_n}(\zeta^{\delta})\right).$$

Therefore we hae $|a_k|, |b_0| \lesssim \delta$ on B. Set

$$R = \min\{d_2c\tau_k|b_k|^{-1}: k = 1, 2, \dots, n\}.$$

Then

$$f(t) = (-b\delta/2 + (b_1 + \sum_{k=2}^{n-1} a_k b_k + b_n d_0)t, \lambda_2^{-1/2} \sum_{k=2}^{n-1} b_k \overline{P}_{k2}t,$$

$$\dots, \lambda_{n-1}^{-1/2} \sum_{k=2}^{n-1} b_k \overline{P}_{k,n-1}t, b_n t)$$

defines a map $f: D_R \longrightarrow B$ with $f_*(\frac{\partial}{\partial t}|_0) = X$ provided that d_2 is sufficiently small. Hence

$$\begin{split} K_{\Omega_{z'}}(\zeta^{\delta};Y) & \leq K_B(\zeta^{\delta};Y) \leq R^{-1} \leq \max\{|b_k|(cd_2\tau_k)^{-1}: \ 1 \leq k \leq n\} \\ & \lesssim \max\{|b_k|\tau_k^{-1}: \ k=1,2,\ldots,n\} \\ & \lesssim \sum_{k=1}^n |b_k|\tau_k^{-1} \lesssim C_{\Omega_{z'}}(\zeta^{\delta};Y). \end{split}$$

Again from the invariant property of $K_{\Omega}(z;X)$ and (1.4), it follows that

(3.18)
$$K_{\Omega}(z;X) = K_{\Omega, \prime}(\zeta^{\delta};Y) \approx C_{\Omega}(z;X)$$

If one combines (3.17) and (3.18), one will get

$$C_{\Omega}(z;X) \approx B_{\Omega}(z;X) \approx K_{\Omega}(z;X) \approx M_m(z;X),$$

and this proves our main theorem. \square

REMARK 2.3. It seems that Kohn's ideal type and D'Angelo's finite 1-type are same in our case. This will be discussed in a forthcoming article.

References

- Bedford, E. and Fornaess, J. E., Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1978), 711-719.
- Catlin, D. W., Estimates of invariant metrics on pseudoconex domains of dimension t wo, Math. Z. 200 (1989), 429-466.
- 3. Cho, S., On the extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Dissertation, Purdue University (1991).
- 4. Cho, S., Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), 105-120.
- Cho, S, A lower bound on the Kobayashi metric near a point of finite type in Cⁿ, The J. of Geom. Analysis 2, No 4 (1992), 317-325.
- 6. Cho, S., Boundary behavior of the Bergman kernel function on some pseudo-convex domains in Cn, Transac. of A.M.S. (to appear).
- D'Angelo, J., Real hypersurfaces, order of contact, and applications, Ann. of Math. 115 (1982), 615-637.
- 8. Diederich, K. and Fornaess, J., Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. 110 (1979), 575-592.
- 9. Diederich, K., Fornaess, J., and Herbort, G., Boundary behavior of the Bergman metric, Proc. Symposia in Pure Math. 41 (1982), 59-67.
- 10. Hahn, K. T., Inequalities between the Bergman metric and the Caratheodory differential metric, Proc. Amer. Math. Soc. 68 (1978), 193-194.
- 11. Herbort, G., On the invariant differential metrics near pseudoconvex boundary points where the Levi form has corank one, Nagoya Math. J. 130 (1993), 25-54.
- Range, R. M., The Caratheodory metric and holomorphic maps on a class of weakly pseudoconvex domains, Pac. J. Math. 78 (1978), 173-189.

Department of Math. Education Pusan National University, Pusan, 609-735, Korea e-mail: cho@hyowon.cc.pusan.ac.kr