GENERALIZED CARLESON INEQUALITY ON SPACES OF HOMOGENEOUS TYPE

YOON JAE YOO*

1. Introduction

The purpose of this paper is to generalize the Carleson inequality, which is known to play important roles in harmonic analysis. The result given here is a generalization of Coifmann, Meyer, Stein [CMS]. A similar result is shown by Deng [D].

2. Preliminaries

Let (X, d, μ) be a space of homogeneous type, i.e., X is a topological space, μ is a positive Borel measure on X, and d is a pseudo-metric on X; more precisely, we assume that there are constant A and K so that for all $x, y, z \in X$ and all $\delta > 0$,

- i) $d(x,y) \ge 0$; d(x,y) = 0 if and only if x = y;
- ii) d(x, y) = d(y, x);
- iii) $d(x,z) \le K[d(x,y) + d(y,z)],$
- iv) $\mu(B(x,2\delta) \leq A_{\mu}(B(x,\delta)),$

where $B(x, \delta) = \{y \in X : d(x, y) < \delta\}$. We also assume that the collection $\{B(x, \delta)\}$ forms a basis for the topology of X. Property iv) is referred to the doubling property of μ . For the details, see [CW].

Let $X^+ = X \times (0, \infty)$, which is an analogue of a generalized upperhalf space over X. Let $\Gamma(x) = \{(y, s) \in X^+ : x \in B(y, s)\}$. This is an analogue of nontangential or conical region. For any set $E \subset X$, the tent over E is the set

$$T(E) = \{(x,r) \in X^+ : B(x,r) \subset E\}.$$

Received August 12, 1994.

1991 AMS Subject Classification: 42B25.

Key words: Carleson measure, Carleson inequality.

^{*} This research is supported by the research grant of KOSEF 1992.

It is then easy to verify that $T(E) = [\bigcup_{x \notin E} \Gamma(X)]^c$. For a measurable function f defined on X^+ , for $x \in X, p \ge 1$ and $\alpha \in \mathbf{R}$, let

$$T_{p,\alpha}(f)(x) = \left[\sup_{x \in B(\delta)} \frac{1}{\mu(B(\delta))} \int_{T(B(\delta))} |f(y,t)|^p \frac{d\mu(y)dt}{t^{\alpha}}\right]^{\frac{1}{p}},$$

where $B(\delta)$ is a ball with radius $\delta > 0$. Let $\mathcal{M}(f)$ denote the Hardy-Littlewood's maximal function

$$\mathcal{M}(f)(x) = \sup_{x \in B(\delta)} \frac{1}{\mu(B(\delta))} \int_{B(\delta)} |f(y)| d\mu(y).$$

For a positive Borel measure λ on $\overline{X^+} = X \times [0, \infty)$, if there exists a constant C > 0 such that $\lambda(T(B(\delta))) \leq C\mu(B(\delta))$ for any $\delta > 0$, then λ is called a Carleson measure. For a measurable function f on X^+ , we define a p-area function $A_{p,\alpha}$ as follows:

$$A_{p,\alpha}(f)(x) = \left[\int_{\Gamma(x)} |f(y,t)|^p \frac{d\mu(y)dt}{t^{\alpha+1}} \right]^{\frac{1}{p}}, \quad \text{if} \quad 1 \le p < \infty, \quad \alpha \in \mathbf{R}$$

and

$$A_{\infty,\alpha}(f) = \sup_{(y,t)\in\Gamma(x)} |f(y,t)|, \quad \text{if} \quad p = \infty.$$

For a nonnegative measurable function f on X^+ , if there exists a constant C such that

$$\frac{1}{\mu(B(\delta))} \int_{B(\delta)} f d\mu \le C \inf_{x \in B(\delta)} f(x)$$

for all $\delta > 0$, then f is said to belong to the class A_1 [M].

3. Generalized Carleson inequality

We begin with lemmas.

LEMMA 1 (COVERING LEMMA OF VITALI-WIENER TYPE). Let X be a space of homogeneous type. Let $E \subset X$ be a bounded set i.e., E is contained in some ball. Let r(x) be a positive number for each $x \in E$. Then there is a sequence of balls $B(x_i, r(x_i))$, $x_i \in E$, such that the balls $B(x_i, 4Kr(x_i))$ cover E, where K is the constant in the triangle inequality. Furthermore, every $x \in E$ is contained in some ball $B(x_i, 4Kr(x_i))$ satisfying $r(x) \leq 2r(x_i)$.

(See Theorem 1.2 on p.69 of [S])

PROPOSITION 1. Let $p \ge 1$. Then $T_{p,\alpha}$ is of weak type (p,p).

Proof. Fix $\lambda > 0$. Set

$$\Omega_{\lambda} = \{ x \in X : T_{p,\alpha}(f)(x) > \lambda \}.$$

Assume first that Ω_{λ} is bounded. Apply lemma 1 to obtain a sequence of disjoint ball $B(x_i, r_i)$ so that $\Omega_{\lambda} \subset \bigcup B(x_i, 4Kr_i)$ and

$$\frac{1}{\mu(B(x_i, r_i))} \int_{T(B(x_i, r_i))} |f(y, t)|^p \frac{d\mu(y)dt}{t^{\alpha}} > \lambda^p.$$

Then from the doubling property of μ it follows that

$$\begin{split} \mu(\Omega_{\lambda}) &\leq \sum \mu(B(x_i, 4Kr_i)) \\ &\leq C \sum \mu(B(x_i, r_i)) \\ &\leq \frac{C}{\lambda^p} \int_{T(B(x_i, r_i))} |f(y, t)|^p \frac{d\mu(y)dt}{t^{\alpha}} \\ &\leq \frac{C}{\lambda^p} \int_{X^+} |f(y, t)|^p \frac{d\mu(y)dt}{t^{\alpha}}. \end{split}$$

If Ω_{λ} is not bounded, fix $a \in X$ and R > 0. Then $\Omega_{\lambda} \cap B(a, R)$ is a bounded set, so we can apply the above argument to obtain

$$\mu(\Omega_{\lambda}\cap B(a,R)) \leq \frac{C}{\lambda^p} \int_{X^{\frac{1}{p}}} |f(y,t)|^p \frac{d\mu(y)dt}{t^{\alpha}}.$$

Letting $R \longrightarrow \infty$ we obtain the same estimate. This completes the proof.

LEMMA 2. Let (X_1, μ_1) and (X_2, μ_2) be measure spaces and T be a sublinear operator that transforms measurable functions in (X_1, μ_1) into measurable functions in (X_2, μ_2) . If T is of weak type (p, q), then

$$\left[\int_{K} |Tf(y)|^{r} d\mu_{2} \right]^{\frac{1}{r}} \leq C \mu_{2}(K)^{\frac{1}{r} - \frac{1}{q}} ||f||_{p}$$

holds for all r, 0 < r < q, and for any subset K of finite measure.

THEOREM 1. Let $f \in L^1(\frac{d\mu dt}{t^{\alpha}}), 0 \le \epsilon < 1$. Then $T_{1,\alpha}(f)^{\epsilon} \in A_1$ for any $\alpha \in \mathbf{R}$.

Proof. Fix $B(\delta_0)$ and $x_0 \in B(\delta_0)$. Put

$$\Lambda_1 = \{B(\delta) : x_0 \in B(\delta), \delta \le \delta_0\}$$

and

$$\Lambda_2 = \{B(\delta): x_0 \in B(\delta), \delta > \delta_0\}.$$

Then we have

$$(1) T_{1,\alpha}(f)(x_0) \leq \sup_{B(\delta) \in \Lambda_1} \frac{1}{\mu(B(\delta))} \int_{T(B(\delta))} |f(y,t)| \frac{d\mu(y)dt}{t^{\alpha}}$$

$$+ \sup_{B(\delta) \in \Lambda_2} \frac{1}{\mu(B(\delta))} \int_{T(B(\delta))} |f(y,t)| \frac{d\mu(y)dt}{t^{\alpha}}$$

$$\equiv A(x_0) + B(x_0),$$

where

$$A(x_0) = \sup_{B(\delta) \in \Lambda_1} \frac{1}{\mu(B(\delta))} \int_{T(B(\delta))} |f(y,t)| \frac{d\mu(y)dt}{t^{\alpha}},$$

and

$$B(x_0) = \sup_{B(\delta) \in \Lambda_2} \frac{1}{\mu(B(\delta))} \int_{T(B(\delta))} |f(y,t)| \frac{d\mu(y)dt}{t^{\alpha}}.$$

To estimate $B(x_0)$, suppose $B(\delta) \in \Lambda_2$. Since $B(\delta) \cap B(\delta_0) \neq \phi$ and $\delta > \delta_0$, there exists a constant $C \geq 1$ such that $B(C\delta) \supset B(\delta_0)$. Hence

$$\begin{split} &\frac{1}{\mu(B(\delta))} \int_{T(B(\delta))} |f(y,t)| \frac{d\mu(y)dt}{t^{\alpha}} \\ &\leq \frac{\mu(B(C\delta))}{\mu(B(\delta))} \frac{1}{\mu(B(\delta))} \int_{T(B(\delta))} |f(y,t)| \frac{d\mu(y)dt}{t^{\alpha}} \\ &\leq C \inf_{x \in B(C\delta)} T_{1,\alpha}(f)(x) \\ &\leq C \inf_{x \in B(\delta_0)} T_{1,\alpha}(f)(x), \end{split}$$

and so

(2)
$$B(x_0) \le C \inf_{x \in B(\delta_0)} T_{1,\alpha}(f)(x).$$

As for $A(x_0)$, note that $B(C\delta_0) \supset B(\delta)$ for some constant C. Indeed, since $B(\delta_0) \cap B(\delta) \neq \phi$ and $\delta \leq \delta_0$, $B(\delta) \subset B(C\delta_0)$ for some constant C by the property of the pseudo-metric. Thus $T(B(\delta)) \subset T(B(C\delta_0))$, and so if we put $f_1(y,t) = f(y,t)\chi_{T(B(C\delta_0))}(y,t)$, then we have

(3)
$$A(x_0) = \sup_{B(\delta) \in \Lambda_2} \frac{1}{\mu(B(\delta))} \int_{T(B(\delta))} |f(y,t)| \frac{d\mu(y)dt}{t^{\alpha}}$$

$$\leq \sup_{B(\delta) \in \Lambda_2} \frac{1}{\mu(B(\delta))} \int_{T(B(\delta))} |f_1(y,t)| \frac{d\mu(y)dt}{t^{\alpha}}$$

$$\leq T_{1,\alpha}(f_1)(x).$$

Since $0 \le \epsilon < 1$,

(4)
$$T_{1,\alpha}(f)(x_0)^{\epsilon} \leq A(x_0)^{\epsilon} + B(x_0)^{\epsilon}.$$

Hence it follows from (1),(2),(3), and (4) that

$$\frac{1}{\mu(B(\delta))} \int_{(B(\delta_{0}))} T_{1,\alpha}(f)(x_{0})^{\epsilon} d\mu(x_{0})
(5) \qquad \leq \frac{C}{\mu(B(\delta_{0}))} \int_{B(\delta_{0})} A(x_{0})^{\epsilon} d\mu(x_{0}) + C \inf_{x \in B(\delta_{0})} T_{1,\alpha}(f)(x)^{\epsilon}
\leq \frac{C}{\mu(B(\delta_{0}))} \int_{B(\delta_{0})} T_{1,\alpha}(f_{1})(x)^{\epsilon} d\mu(x) + C \inf_{x \in B(\delta_{0})} T_{1,\alpha}(f)(x)^{\epsilon}$$

By lemma 2, the first term of the right-hand side of (5) is less than

$$C\left[\frac{1}{\mu(B(\delta_0))}\int_{B(C\delta_0)}|f(y,t)|\frac{d\mu(y)dt}{t^\alpha}\right]^\epsilon$$

and so (5) is reduced as

$$\frac{1}{\mu(B(\delta))}\int_{(B(\delta_0))} T_{1,\alpha}(f)(x_0)^\epsilon d\mu(x_0) \leq C\inf_{x\in B(\delta_0)} T_{1,\alpha}(f)(x)^\epsilon,$$

which proves theorem.

LEMMA 3(WHITNEY DECOMPOSITION). Let X be a space of homogeneous type. Let $O \subset X$ be an open set. Then there are positive constants M, C_1, C_2, C_3 , and a sequence $\{B(x_i, \delta_i)\}$ of balls such that

- (i) $\bigcup_i B(x_i, \delta_i) = O$
- (ii) $B(x_i, C_1\delta_i) \subset O$ and $B(x_i, C_2\delta_i) \cap O^c \neq \phi$,
- (iii) the balls $B(x_i, C_3\delta_i)$ are pairwise disjoint,
- (iv) no point in O lies in more than M of the ball $B(x_i, \delta_i)$.

(See [CMS].)

THEOREM 2. Let $\frac{1}{p} + \frac{1}{q} = 1$, $1 \leq p \leq \infty$. Suppose there exist constants A > 0, B > 0 such that $A\delta^n \leq \mu(B(x, \delta)) \leq B\delta^n$ for all $\delta > 0$. Then there exists a constant C such that

$$\int_{X^+} f(x,t)v(x,t)\frac{d\mu(y)dt}{t^{\alpha}} \le C \int_X A_{p,n-1+\alpha}(f)(x)T_{q,\alpha}(v)(x)d\mu(x)$$

for all f, v.

Proof. Assume first that $1 \leq p < \infty$. For each integer k, set

$$\Omega_k = \{ x \in X : A_{p,n-1+\alpha}(f)(x) > 2^k \}$$

and

$$\Omega_k = \{x \in X : \mathcal{M}(\chi_{\Omega_k})(x) > \frac{1}{2}\}.$$

Observe that $\Omega_k \supset \Omega_{k+1}$ and $\Omega_k^* \supset \Omega_{k+1}^*$ for each k. Further $\bigcup_{k=-\infty}^{\infty} T(\Omega_k)$ contains the support of f. By Lemma 3, there exist collections

of disjoint balls $B(\delta_{k,j})$ and $B(\delta_{k,j}^*)$ such that $\Omega_k \subset \cup_j B(c\delta_{k,j})$ and $\Omega_k^* \subset \cup_j B(c\delta_{k,j})$. Also we can choose a constant c so that $T(\Omega_k) \subset \cup T(B(c\delta_{k,j}))$ and that $T(\Omega_k^*) \subset \cup_j T(B(c\delta_{k,j}^*))$. Put $I_{k,j} = T(B(c\delta_{k,j}))$ and $J_{k,j} = T(B(c\delta_{k,j}^*))$ for simplicity. Then it follows from Hölder's inequality that

$$\left| \int_{X^{+}} f(y,t)v(y,t) \frac{d\mu(y)dt}{t^{\alpha}} \right|$$

$$\leq \left| \sum_{k=-\infty}^{\infty} \int_{T(\Omega_{k}^{\bullet}) \setminus T(\Omega_{k+1}^{\bullet})} f(y,t)v(y,t) \frac{d\mu(y)dt}{t^{\alpha}} \right|$$

$$\leq \left| \sum_{k=-\infty}^{\infty} \sum_{j=1}^{\infty} \int_{J_{k,j} \setminus \cup_{s} J_{k+1,s}} f(y,t)v(y,t) \frac{d\mu(y)dt}{t^{\alpha}} \right|$$

$$\leq \sum_{k=-\infty}^{\infty} \sum_{j=1}^{\infty} \left[\int_{J_{k,j} \setminus \cup_{s} J_{k+1,s}} |f(y,t)|^{p} \frac{d\mu(y)dt}{t^{\alpha}} \right]^{\frac{1}{p}}$$

$$\left[\int_{J_{k,j} \setminus \cup_{s} J_{k+1,s}} |v(y,t)|^{q} \frac{d\mu(y)dt}{t^{\alpha}} \right]^{\frac{1}{q}}.$$

Put

$$A_{k,j} = \int_{J_{k,j} \setminus \bigcup_{t} J_{k+1,j}} |t(y,t)|^p \frac{d\mu(y)dt}{t^{\alpha}}$$

and

$$B_{k,j} = \left[\int_{J_{k,j} \setminus \cup_{\mathcal{E}} J_{k+1,\mathcal{E}}} |v(y,t)|^q \frac{d\mu(y)dt}{t^{\alpha}} \right]^{\frac{1}{q}}.$$

If we show

$$(2) A_{k,j} \le c \int_{B(c\delta_{k,j}^*)\setminus \cup_{\delta} B(c\delta_{k+1,\delta})} A_{p,n-1+\alpha}(f)(x)^p d\mu(x)$$

and

(3)
$$B_{k,j} \leq \mu(B(c\delta_{k,j}^*))^{-\frac{1}{p}} \int_{B(c\delta_{k,j}^*)} T_{q,\alpha}(v)(x) d\mu(x),$$

then we have

$$\left| \int_{X^{+}} f(y,t)v(y,t) \frac{d\mu(y)dt}{t^{\alpha}} \right|$$

$$\leq A_{k,j}^{\frac{1}{p}} B_{k,j}$$

$$\leq C \sum_{k=-\infty}^{\infty} \sum_{j=1}^{\infty} \mu(B(c\delta_{k,j}^{*})^{\frac{1}{p}} 2^{k} \mu B(c\delta_{k,j}^{*})^{-\frac{1}{p}} \int_{B(c\delta_{k,j}^{*})} T_{q,\alpha}(v) d\mu$$

$$\leq C \sum_{k=-\infty}^{\infty} \sum_{j=1}^{\infty} 2^{k} \int_{B(c\delta_{k,j}^{*})} T_{q,\alpha}(v) d\mu$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k} \int_{\Omega_{k}^{*}} T_{q,\alpha}(v) d\mu.$$

Since $T_{q,\alpha}(v) \in A_1$, it follows from proposition 1 that

$$\int_X \mathcal{M}(\chi_{\Omega_k})(x)^2 T_{q,\alpha}(v)(x) d\mu(x) \leq C \int_X \chi_{\Omega_k}(x)^2 T_{q,\alpha}(v)(x) d\mu(x),$$

and so

(5)
$$\int_{\Omega_k^*} T_{q,\alpha}(v) d\mu \le 4 \int_X \mathcal{M}(\chi_{\Omega_k})(x)^2 T_{q,\alpha}(v)(x) d\mu(x)$$
$$\le C \int_X \chi_{\Omega_k}(x)^2 T_{q,\alpha}(v)(x) d\mu(x)$$
$$= C \int_{\Omega_k} T_{q,\alpha}(v)(x) d\mu(x).$$

Therefore by (5), (4) can be rewritten as

$$\left| \int_{X^{+}} f(y,t)v(y,t) \frac{d\mu(y)dt}{t^{\alpha}} \right| \leq C \sum_{k=-\infty}^{\infty} 2^{k} \int_{\Omega_{k}^{*}} T_{q,\alpha}(v)d\mu$$

$$\leq C \sum_{k=-\infty}^{\infty} 2^{k} \int_{\Omega_{k}^{*}} T_{q,\alpha}(v)d\mu$$

$$= C \int_{X} A_{p,n-1+\alpha}(f) T_{q,\alpha}(v)d\mu(x).$$

So if we show (2) and (3), then (6) holds for $1 \le p < \infty$. To see (2), observe that

$$\int_{B(c\delta_{k,j}^{*}\setminus\cup_{s}B(c\delta_{k+1,s})} A_{p,n-1+\alpha}(f)(x)^{p} d\mu(x)
= \int_{B(c\delta_{k,j}^{*}\setminus\cup_{s}B(c\delta_{k+1,s})} d\mu(x) \int_{\Gamma(x)} |f(y,t)|^{p} \frac{d\mu(y)dt}{t^{n+\alpha}}
= \int_{[B(c\delta_{k,j}^{*}\setminus\cup_{s}B(c\delta_{k+1,s})]\times X^{+}} |f(y,t)|^{p} \chi_{\Gamma(x)}(y,t) \frac{d\mu(x)d\mu(y)dt}{t^{n+\alpha}}
\geq \int_{J_{k,j}\setminus\cup_{s}J_{k+1,s}} |f(y,t)|^{p} \frac{d\mu(y)dt}{t^{n+\alpha}} \int_{B(c\delta_{k,j}^{*}\setminus\cup_{s}B(c\delta_{k+1,s}))} \chi_{\Gamma(x)}(y,t) d\mu(x).$$

For any fixed $(y,t) \in J_{k,j} \setminus \cup_s J_{k+1,s}$, we have

(8)
$$B(y,t) \cap (\Omega_{k+1}^*)^c \neq \varphi.$$

In fact, suppose $B(y,t) \subset \Omega_{k+1}^* \equiv \bigcup_j B(c\delta_{k+1,j}^*)$. Then $(y,t) \in T(B(c\delta_{k+1,j}^*))$, for some j, that is, $(y,t) \in J_{k+1,j}$, which leads to a contradiction. Hence (8) holds. So we can choose a point $p \in B(y,t)$ so that $\mathcal{M}(\chi_{\Omega_{k+1}})(x) \leq \frac{1}{2}$, which implies

(9)
$$\frac{1}{\mu(B(y,t))} \int_{B(y,t)} \chi_{\Omega_{k+1}}(x) d\mu(x) \le \frac{1}{2},$$

and so by (9), we have

(10)
$$\frac{1}{\mu(B(y,t))} \int_{B(c\delta_{k,j}^{*})\setminus\cup_{s} B(c\delta_{k+1,s})} \chi_{\Gamma(x)}(y,t) d\mu(x)$$

$$\geq \frac{1}{\mu(B(y,t))} \int_{B(c\delta_{k,j}^{*})\setminus\cup_{s} B(c\delta_{k+1,s})} \chi_{B(y,t)}(x) d\mu(x)$$

$$\geq \frac{1}{\mu(B(y,t))} \int_{B(c\delta_{k,j}^{*})\setminus\cup_{s} B(c\delta_{k+1,s})} \chi_{B(y,t)}(x) d\mu(x)$$

$$= \frac{1}{\mu(B(y,t))} \int_{B(y,t)} [1 - \chi_{B(y,t)\cap\cup_{s} B(c\delta_{k+1,s})}(x)] d\mu(x)$$

$$= \frac{1}{\mu(B(y,t))} \int_{B(y,t)} [1 - \chi_{B(y,t)\cap\Omega_{k+1}}(x)] d\mu(x)$$

$$\geq \frac{1}{2}.$$

In the second inequality of (10), we used the fact $B(y,t) \subset B(c\delta_{k,j}^*)$. Thus

$$\begin{split} \int_{B(c\delta_{k,j}^*)\backslash \cup_{\pmb{s}} B(c\delta_{k+1,\pmb{s}})} \chi_{\Gamma(\pmb{x})}(y,t) d\mu(\pmb{x}) &\geq C\mu(B(y,t)) \\ &\geq Ct^n, \end{split}$$

which implies (2). To estimate (3), note that

$$\begin{split} &\int_{B(c\delta_{k,j}^{\star})} T_{q,\alpha}(v)(x) d\mu(x) \\ &\geq \int_{B(c\delta_{k,j}^{\star})} \left[\frac{1}{\mu(B(c\delta_{k,j}^{\star}))} \int_{J_{k,j}} |v(y,t)|^q \frac{d\mu(y) dt}{t^{\alpha}} \right]^{\frac{1}{q}} d\mu(x) \\ &= \left[\int_{J_{k,j}} |v(y,t)|^q \frac{d\mu(y) dt}{t^{\alpha}} \right]^{\frac{1}{q}} \mu(B(c\delta_{k,j}^{\star}))^{\frac{1}{p}}, \end{split}$$

This shows (3).

Finally, assume $p = \infty$. Then

$$\begin{split} &\left| \int_{X^+} f(y,t) v(y,t) \frac{d\mu(y) dt}{t^{\alpha}} \right| \\ &\leq \sum_{k=-\infty}^{\infty} \int_{T(\Omega_k) \backslash T(\Omega_{k+1})} |f(y,t) v(y,t)| \frac{d\mu(y) dt}{t^{\alpha}} \\ &\sum_{k=-\infty}^{\infty} \sum_{j=1}^{\infty} 2^{k+1} \int_{I_{k,j}} v(y,t) \frac{d\mu(y) dt}{t^{\alpha}} \\ &\leq C \sum_{k=-\infty}^{\infty} 2^k \sum_{j=1}^{\infty} \int_{B(c\delta_{k,j})} T_{1,\alpha}(v)(x) d\mu(x) \\ &\leq C \int_X A_{\infty}(f)(x) T_{1,\alpha}(v)(x) d\mu(x). \end{split}$$

This completes the proof.

References

- [CMS] Coifman, R. R., Meyer, Y., and Stein, E., Some new function spaces and their applications to harmonic analysis, J. of Func. Anal. 62 (1985), 304-335.
- [CW] Coifman, R. R. and Weiss G., Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [D] Deng, D. E., On a generalized Carleson inequality, Studia Math. 78 (1984), 245-251.
- [M] Muckenhaupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- [S] Sueiro, J., On maximal functions and Poisson-Szegö integrals, Trans. Amer. Math. Soc. 298 (1986), 653-669.

Department of Mathematical Education Teachers College Kyungpook National University Taegu 702-701, Korea