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LARGE DEVIATIONS FOR RANDOM
WALKS WITH TIME STATIONARY
RANDOM DISTRIBUTION FUNCTION

Duc HuN HoNG

1. Introduction

Let F be a set of distributions on R with the topology of weak
convergence, and let A be the o-field generated by the open sets. We
denote by F% the space consisting of all infinite sequence (F1, F2, - - ),
F, € F and RS° the space consisting of all infinite sequences (1,3, - )
of real numbers. Take the o-field A$° to be the smallest o—field of sub-
sets of F° containing all finite-dimensional rectangles and take B$°
to be the Borel o—field of R{®. Let w = (F{/,Fy,---) be the coor-
dinate process in R$® and v its distribution on A$°. Let 6 be the

coordinate shift :6%(w) = w' with F¥ = Fe g k=12, On
(R$°,BS°) we also define the shift transforraation o : R® — R$e
by o(zy,x2,-++) = (z2,23,---). v is called stationary if for every

A € A®, v(671(A)) = v(A) and we let 7 be its marginal distri-
bution. Let I be the o-field of invariant sets in A7°, that is, T =
{A|6-1(A) = A, A € A} and let J be the o-field of invariant
sets in B, that is, J = {Blo~!(B) = B.B € B{®}. v is called
independent and identically distributed (i.i.d.) if v is stationary and
product measure. For each w, define a probability measure P, on
(R$°,B$®) so that P, = II{2, FY’. A monotone class argument shows
that P,(B), B € B{®, is A{°-measurable as a function of w. So we can
define a new probability measure such that P(B) = [ Pu(B)v(dw).
Define the process {X,} on (R, B{®) such that X,(z1,22,++) = 2n
and set S, = X; + X2 + - + Xn. By the definition of P, {X.}
are independent with respect to P, and we also note that {X,}is a
sequence of independent and identically distributed random variables
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sequence of independent and identically distributed random variables
when F has just one element. In this paper we generalize the classical
Cramer theorem in this set up.

2. Strong law of large numbers

In this section we consider some strong law of large numbers which
are used to prove the main results.

LEMMA 1. Let F = {F| [ |z|dF(z) < oo, [ 2dF(z) = 0}, and let v
be stationary with [ [|z|dF(z)7(dF) < oc. Then X, with respect to
P satisfies

EX,|J]=0 a.s.

Proof. By the assumption, E|X;| < oo and hence E[X,]| J] exists.
Now let A € J and let {(X;,X2,---) € B} = A for some B € B,
Then we have

/.Y]dprz-/ X,dP
A {(X1,X2,--)EB}

:/ X,dP
{{(X2,X3,---)EB}

= / (/xldFl‘"(acl)/ 2, dFe( :r,)) v(dw)

=0,

where the last equality holds because [ vdF(z) = O for all F € F. This
proves the lemma.

THEOREM 1. Let F = {F| [zdF(z) = O,f];r|dF(.r) < oo} and v
be stationary with [ [ |z|dF(z)r(dF) < co. Then

Pw{ls—ﬁ — 0} =1, v-ae w.
n

Proof. The proof follows directly from Proposition 1 and 3[5],
Lemma 1, and the Birkhoff’s ergodic theorem.
In general we then prove the following theorem.
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THEOREM 2. Let F = {F| [ |z|dF(z) < oo} and let v be stationary
with [ [ |z|dF(z)m(dF) < co. Then

P‘.,{—‘S-'n2 — E’[/mdF,'(:L’)[I](w)} =1, v—ae w.
(E[f 2dF;(2)|I)(w) = E[f zdFy(2)] = [ [xdF(z)n(dF) in case v is
ergodic.)
Proof. By Theorem 1, Pu{§£§*§ﬂ — 0} =1, v-ae. w, where

E,S, = ZZ__.lede =3 il JzdF¥(z). We know %E‘,Sn —
E[f 2dF;(z)|T)(w), v-a.e. w by the ergodic theorem. Hence

Pw{% - E[/J:dFl(x)IIJ(w)} =1, v —aew.

3. Large deviations

We begin this section by introducing the logarithmic moment gener-
ating function Cr(€) = log Mp(¢) where MFp(€) = [exp(éz)dF(z), €
€ R, and C(¢) = [, Cr(&)n(dF), € € R. Throughout this section we
assume

(3.1) MFp(§) < oo forallF € F and for all¢ € R,

(3.2) C(¢) < oo forallt € R.

Note that since £ € R — Cr(£) is a convex function, for each F € F,
so is C(€). Next let K(z) be the Legendre transform of C(¢) :

(3.3) K(z) =sup{éz ~C()l€ € R}, «€R.

Note that, by its definition as the pointwise supremum of linear func-
tions, K () is necessarily a convex function. In order to develop some
feeling for the relationship between C(¢) and K(z), we present the
following elementary lemma.
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LEMMA 2. K(z) > 0, moreover, if [ [ |z|dF(z)n(dF') < co and p =
[ [ zdF(z)r(dF) then K(p) = 0, K is non-decreasing on [p, o) and
non-increasing on (—oo,p]. In addition, for ¢ > p, K(g) = sup{{q —
C(€)|¢ > 0} and for ¢ < p, K(q) = sup{{q — C({)|£ < 0}.

Proof. We begin by noting that, since £z — C(£) = 0 for £ = 0 and
for every ¢ € R, K(¢) > 0. Now suppose that [ [ |z|dF(z)x(dF) < oo
and set p = [ [ zdF(z)w(dF). To see that K (p) = 0, we use Jensen’s
inequality to obtain

= [ (g [ exp(éa)ap(a)ym(ar)
Va
> /}_ / ExdF(z)n(dF) = £p forall £€R.

In particular, this shows that €p — C(£) < 0 for all £ € R and hence
K(p) < 0. Since K(z) is non—negative and convex, this proves that
K(p) = 0, that K(z) is non-decreasing on [p,o0), and that K(z) is
non-increasing on (—oo, p).

As a consequence of Lemma 2, we have the following,.

LEMMA 3. Let F = {F| [exp(fx)dF(z) < 00,6 € R}. Ifv is
stationary and ergodic with [ [ |z|dF(z)n(dF) < oo. then for every
closed set G C R,

lim sup — logP {%ﬁ EG} —inf{L'(z)|z € G}, v—ae w.

n—oo

Proof. Let p = [ [zdF(z)n(dF). Suppose ¢ > p(q < p). For £ > 0,
Sn S
P > ) < expl(—€q)Euexp(¢22)
n X
= exp(~£q)T, B exp (654 ).
Then

Liog P{ 22 > g} < Lioglenp(—€) I Eu (exn (63

.____éq_;_ Zlog/e)(p(é )C]F'd( ).
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Note that

1 o ,
= ) log [ exp(x)dF;’(z) — [(log | exp(éz)dF(z))n(dF) = C(£)
- ; g/ xp( ( / g/ p(£z)dF(

v-a.e. w by the ergodic theorem. Then for given € > 0, and v-a.e. w
that we have for n > N(w)

%logp {§2>q}<mf{ =§g+C(§)IE =20} + e

Since € is arbitrary, by Lemma 2,

limsup ~log P.{ 2% > g} < inf(~£q + Cl)f¢ > 0} = ~K(g)
Since K is non-decreasing(non-increasing) on [p, oo )(on (—o0, p|)
above inequality proves the result when either G C [p,00) or G C
(=00, p]. On the other hand, if both GN[p,oc) # ¢ and G N(—oo,p] #
, let ¢+ = inf{z > p|r € G} and ¢_ = sup{z < p|r € G}. Then for
61 2 0, 62 2 0

o)
< exp(—&19+)E. (exp(él%)) + exp(§29-)E. (exp(—fz%))
and hence

hmsup log P, {52 EG}

n—oo I

< max [hmsup—log (exp( ~€194)E, (PYP(fJ‘S—))>’

n—oo

lim sup — log (exp (§29-)E.(exp(- ———))J

n=—+00

< ma,x[—I&(q+),—K(q_)] = —inf{K(z)|z € G}.

For the lower bound we need the following lemma. We define F~1(¢) =
sup{z|F(z) <t},t € (0,1).
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LEMMA 4. Suppose that for every F € F, F~! is unbounded below
and above and that there exists a measurable function ¢(¢, F) such
that

o zexp(§r) .
(34) l / s dF(r)!Sé(f,F),

(3.5) / sup ¢(§,F) ) n(dF) < oo for all & € R.
1€1<€o

Then we have

1) f( {) // x;;cp(gj)dF(I)w(dF) 1s continuous and limg 40 f(€)

11) For each q, K(q) = sup{€q — c(£)|€ € R} is assumed at some point

€ = &c(q) or equivalently C'(€.(q)) = ¢

Proof. i) We know that for all F', the function § — | - L exp({:c)

Mrg(€)
dF(z) — +oc(—o00) as € =+ 4-00(--00) by

———dF(x)

rexp(éx)
Mp(£)
unboundedness of F~'. So f(£) is continuous by the Lebesgue dom-
inated convergence theorem using (3.4) and (3.5) and we can easily
check f(£) — +oc(—oc) as £ — +oo(—0).
i1) consider the following:

lim C(&)—C(&)
=g =8

[ CR(&) = Cr(e)
-l [ S )

= Jim, / Cp(€")m(dF), where ¢ € (£,€) or € e(€,€)

o z exp(€z)
= £11—1’151,/A 7 (5,,) dF(z)n(dF

texp ;
B /e—»E'/ MF(E”) dF(z)r(dF)
zexp({'z) _
// AR @) dF) = 1),

1s continuous and f
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hence C'(¢) = f(§).

The fourth equality above follows from (3.4), (3.5) and the domi-
nated convergence theorem. Note that C is convex. So for every given
q there exists £.(g) such that C'(£.(¢)) = ¢. This proves the lemma.

THEOREM 3. Suppose that v is stationary and ergodic. Then under
(3.1), (3.2), (3.4) and (3.5) for every measurable I' C R we have that

— inf{K(z)|z € T'°}

IN

liminf —1- log P, (% € F) < limsup%log P, (%’1 € I‘)

n—oco N n—oo

IA

—inf{K(z)|z € T} v—ae w.

Proof. In view of Lemma 3, we only need to show that if ¢ € R and
6>0,

(3.6) lim inf 1 log P, (;9_'1 €(qg—€q+ s)) > —K(g).
n—oo N n

In proving (3.6), we first suppose that for all F € F, F~!is unbounded
above and below. Then for each ¢, there exists £ such that C'(§) =
f(€) = ¢ by Lemma 4, and so K(g) = &g — C(&).

A5 e (g-big+5))

dFy(z1)---dF) (zp)
-/{—*—-———-—r dodro E(q—ﬁ,q+5)} '

2 Mpe(€) - Mpe (§) exp(=£(q + 6)n)

X/
{m‘——‘;ﬂew—é,qm}

exp(€e1) ) explErn)
MF{U(g) dFl ( l) ‘MF,‘;’(E) an( '")'

Here we need the following lemma.



286 Dug Hun Hong

LEMMA 5. Under the conditions of Theorem 3, we have for v—a.e.

'/{ D E(q—5,q+5)}

exp(€x1) exp(£zn) o
mdFl (l]) . mdF l‘n) -+ 1,

as 1 — ocC.

exp(éz)
_ . ' Mr(£)
F={F|F € F}. Define ¢ : F* — F* by ¢(w) =w = (F¥, F¥ - ).
Now let = v o ¢~1. Then v is stationary and ergodic. Now we apply
Theorem 2 to this probability measure. Then we have

/ /.I'dF w(dF )} v —a.e w,

Note that [ f:ch(x)vr(dF) J [ 5RE dF (2)x(dF) = f(£) = q.
Hence the lemma follows.

Now back to the proof of Theorem 3. By the above lemma we have,
for given € > 0, and v-~a.e. w that for n > N(w)

¢
Proof. For given £ define F so that F(t) = / ——>—=dF(z). Let

1 Se 1 <~ , o
~log Po{ZZ € (g -8+ 6)} > ~ > 1o Mrz (8) = €l +2) =
and consequently

S .
hnmmf—logP {—" € (q—é,q+5)} > C6) = E(q+6), v—ae w.
- O E
By monotonicity, the result holds witlhi 6 =0, 1.e., with K'(g).
We must now handle the general case. Suppose that there exists
F € F such that F~' is bounded We replace all F' by the distribution
z/e 2
Y
F x ¢, where ¢.(z / ———')dl and apply the at
de(z) = \/2—7r exp a .pply the above
results to this. Here x is the (‘onvolutlon Then, letting € | 0 the
desired result follows.
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REMARK 1. If v isi.i. d then {X,} is i.i.d. with respect to P with
distribution function F;(z) = [ F(z)n(dF). By the Cramer theorem,
{X=n} with respect to P has the rate function

K(z) = sup{éc — C(¢)I€ € R}

where C(¢) = log [ exp(éz)dF(z) = log [ [ exp(§z)dF(z)m(dF). By
Jensen’s inequality, we can check easily C(¢£) > C(€) and hence K (z) <
K(z).
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