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A HOPF BIFURCATION IN A
PARABOLIC FREE BOUNDARY PROBLEM
WITH PUSHCHINO DYNAMICS

YooNn Mg HAM* AND ByYoNG IN SEUNG

1. Introduction

A Hopf bifurcation of a free boundary (or an internal layer) occurs
in solidification, chemical reactions and combustion. It is a well-known
fact that a free boundary usually appear as sharp transitions with
narrow width between two materials ([2]). These phenomena can be
described by reaction diffusion systems with a small layer parameter ¢
and a controlling parameter

(1) eTuy =2 ug, + flu. v)
v =Dvgy + glu,v),  (2,t) € (0 1) x (0,00).

Here u and v measure the levels of two diffusing quantities. The func-
tions u and v satisfy Neumann boundary conditions at z = 0,1. The
reaction terms are assumed to be of the bistable type which means that
the nullcline of f and g have three intersection points and the curve
f = 0 determines as a triple valued function of v. This system is a
model of the time evolution of interaction between two separated pop-
ulation and also a model of the mixing of cheniically reacting-diffusing
substances.

When ¢ and 7 are chosen to be very small, the system (1) models a
situation in which the quantity measured by u reacts much faster than
that measured by v (7 small), while at the same time v diffuses slower
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than v (¢ small). The principal interest in systems like (1) comes from
the fact that there exist families of stationary solutions parametrized
by e, which approach discontinuous functions of z as ¢ — 0. When
¢ is small, the stationary solution, being smooth, exhibits an abrupt
but continuously differentiable transition at the location of the limiting
discontinuity. The transition takes place with in an z-interval of length
O(e). An z-interval, in which such an abrupt change takes place, is
loosely called a layer — a boundary layer when it is adjacent to an
endpoint of the interval or an internal layer when it is in the interior
of the interval.

In 1989, Nishiura and Mimura [5] showed that the stationary solu-
tions of (1) loses stability and there is a Hopf bifurcation as a parameter
7 varies (in this case ¢ # 0). We are interesting in an occurance of a
Hopf bifurcation for the case ¢ = 0. Whenever the singular limit ¢ | 0
of the system (1), an analysis of the layer solutions suggests that the
layer of width O(e) converges to an interfacial curve z = s(t) in z,t-
space as € | 0. In 1992, J. Keener and A. Panfiliov used f and ¢ are
a piecewise-linear “Pushchino dynamics”[6] in order to show the wave
evolution in heterogeneous excitable media of a cardiac tissue. The
function f and ¢ are given by ¢g{u,v) = kv — u and

flu,v) =u+eciv for u<u_,
—u+cov—a for u_ <u<ug,

u+ec(v—1) for u>ug.

where ¢1,¢3,a and k are positive constants and u_, uy are real num-

bers. By the bistable assumption, a constant k must satisfy —c; < k <
ci{ca—a)
“erga

When ¢ = 0, the problem (1) with applying these dynamics of f
and g is reduced to the following free boundary problem

vr = vz — (e1 + ko + et H(z — s(t)) for(z,t) € Q7 uQY,
v.(0,t) =0 =v,(1,¢t) fort >0,
v(z,0) =vp(z) for0 <z < 1,

ds

T = C(v(s(t),t)) fort >0,

S(O)ZS(), 0<sg <,
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where v(z,t) and v, (z,t) are assumed continuous in £ = (0,1) x(0, co0).
Here, the function H(-) is the Heaviside function, 2~ = {(z,t) € 2 :
0<z<s(t)) and QF = {(2,1) € s(t) <a < 1}

In this paper, we will show t,h( occurrence of a Hopf bifurcation as
7 1 0 in the free boundary problem (2). The velocity of the interface,
C(v), in (2), which specifies the evolution of the interface s(t), is deter-
mined from the first equation in (2) using asymptotic techniques (see
in [2], [4]). The function C(v) can be calculated explicitly as

2 - c}—~2a

C'(U) - c1+c2
Lz a
\/ rytee (v+ 71+<‘2)

In section 2, we introduce a change of variables to regularize prob-
lem (2). From this, we give an alternative proof of well-posedness and
obtain enough regularity of the solution for an analysis of the bifurca-
tion. In section 3, we show that as 7 decreases. the stationay solutions
lose stability which is results from a Hopf bifurcation and produces a
kind of periodic oscillation in the location of internal layers.

2. Regularization

In this section, we obtain more regularity for the solution by semi-
group methods since the nonlinear term of (), H(- — s), is not differ-
entiable. We write (2) as an abstract evolutinn equation

d{v,s) iy \ ~
(F){ _dT'] + A(v,s) = Flu, s),
(v, )(0) = (vo(+). 501

of a differential equation in a space X of the form X = X x J, where
X is a Banach space of functions and J is a real interval. Here the
operator A 1s 2 x 2 matrix

i I E )
o 0 0/’

and the nonlinear operator F' is

o) — Fi(e(t,s(8) Y VH(- — s(t))
Flees) = <F2(v(-,t).s(t))) = (t}c( (s, 0))
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The Neumann boundary conditions are incorporated in the definition

of the Banach space X.
2

We consider a differential operator, Tz

5 + (c; + k) as a densely
z

defined operator
Av = ~vzp 4 (c1 + k) with v(0) = v,(1) =0
A D(A) Cdense X — X
D(A) := {v e H**((0,1)) : v.(0) = v,(1) = 0}
where
X := Ly((0,1)) with norm || - ||2.

For fixed s, the map t — H(- — s(t)) is locally Holder-continuous into
X on (0,7T), so by standard results for parabolic problems (see e.g.[3])
we obtain from the first equation in (F) that the following regularity
holds for v.

ProposITION 2.1. If (v,s) is a solution of (F) then v(-,t) € D(A)
and the map t — v(-,t) is in C°([0,T), X) N C((0,T), X).

Proof. Using the similar argument in [7], we obtain the above re-
sults, O

We define

1
o(z,s) = / ¢1-G(z,y)- H(y — s)dy = A~ ey H(- — 5))

and

Let
u(t)(z) = v(z,t) — g(z,s(t)).

We choose the space X x R by X and define

D(A) = D(4) xR,
A: D(Z) Cdense X —t X’, : K(u,s) = (Au, 0).
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The corresponding evolution system to the regular problem of (1) with
an initial value problem for (u, s) can then be written as

R){ ‘l (w,s)+ A(u,.ﬂ) = %f(u,s)
(w,s)(0) = (u(0),s(0)) = (uo, s0) -
Here a nonlinear forcing term f is defined on the set
W= {(u,s) € CH[0,1)) x (0,1) : u(s) +~(s) € I} C C'([0,1]) x R
and
f:W - X xR, flu,s):= fa(u,s)- (fils), 1)

where

f1:(0,1) = X fi(s)(x) = Gla,s)

fo W =R, fiou,s) = Clu(s) + ().
Then we can show the regularity of f.

LEMMA 2.2. The functions f; : (0,1) —» X, fo : W — R and
f: W — X are continuously differentiable with derivatives given by

.mﬂ:,)kﬂ
dy
Dfolu,s)(@,8) = C'(u(s) +3(s)) - (u'(5)8 + 7' (8)d + dls))

Df(u.s)(,8) = fa(u,s) (f1(5),0)- 5+ Dfol(u, s)(%,3) - (fi(s), 1)

Proof. The proof is similar to the Lemma 2.4 in [6]. O
We now apply semigroup theory to (R) using domains of fractional
powers « € [0,1] of 4 and A:
X®:=D(A%), X":=D(A%), X=X xR.

For this we need to find an « € (0,1) such that X < C([0,1]),
because then f: W N X* — X is continuously differentiable. By the
imbedding theorem in [3], we have the following wellposedness result.
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THEOREM 2.3.

(i) For any 1 > a > 3/4, (uo,80) € WN X and 7 € R there exists
a unique solution

(ua 3)(t) = (u7 S)(t; Uo, S0, T)
of (R). The solution operator
(u(), S0, T) = (u’ S)(ta Ug, So, T)

is continuously differentiable from X® x R into X® for t > 0. The
functions v(z,t)

v(a,1) = u(t)(z) + g(z, 5(£))
and s then satisfy (F) with v(-,0) € X2, v(so,0) € I.

(ii) If (v, s) is a solution of (F) for some u € R with initial condition
vo € X% 1> a > 3/4, sg € (0,1), vo(se) € I, then (ug,sq) :=
(vo — g(-,20),80) € X*NW and

(v(+1), (1)) = (u, s)(t; w0, s0,7) + (9(-, 5(¢)), 0)

where (u, s)(t; ug, s0,7) is the unique solution of (R).

(iii) For any 1 > a > 3/4, 1 € R, (vo,80) € U := {(v,s) €
X% x(0,1) : v(s) € I} the problem (F) has a unique solution

(v(z,t),s(t)) = (v,s)(z,t;vo,50,7).
Additionally, the mapping
(UO, 590, T) = ('U, S)('v t; o, S0, T)

is continuously differentiable from X* x R? into X* x R.
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3. Stationary solutions and Hopf bifurcation

3.1 Stationary solutions

2(c1 +¢2)
TCy

¢1 + k. The function ~{s) which is defined in the section 2 becomes

We introduce a new paramecter ¢ € R*, ;1 = and ¢? =

1
¥(s) =/ aG(s,y)dy
c (1 B sinh(e(2s - 1)))

g
2¢ sinh ¢

and we have
, 1 )
(3) V() <0, 9(0) = 5, 9() = 0.

We thus obtain the existence of stationary solutions of (R).
¢ — 2a 1

_ - < ,

2(c1 + ¢2) (e1+ k)

unique stationary solution (0,s*) for all u # 0 with s* € (0,1). The

linearization of f at (0,s*) is

ProrosITION 3.1. If 0 < then (R) has a

Df(0,57)(,8) = (%) +7/(s7)3) - (fi(s"),1) -

The pair (0, s*) corresponds to a unique steady state (v*, s*) of (F) for

it # 0 with

— 2a
Proof. Since C(r)=0iff » = —-—CL-——H—, the stationary problem is
2(c1 + c2)

]
solvable with s* € (0,1) iff 4(0) > ﬁ—
1 c1 — 2a

> >
(cr+k) " 2(c1+c2)
The formula for D f(0, s*) follows from Lerama 2.2 and the relation
C'I( 1 —2a ) _ 2(01 +C-2)
2(c1 + ¢2) 1
for (F) is obtained using Theorem 2.3. O

- > (1) (see (3)), which

0.

nleans

. The corresponding steady state (v*,s")
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3.2 A Hopf bifurcation

We next want to show that there is a Hopf bifurcation from the
curve u — (0, s*) of steady states and therefore introduce the following
definition

DEFINITION 3.2. Under the assumptions of Proposition 3.1, define
(for 1 > @ > 3/4) the operator B € L(X*,X),

B := Df(0,s").

We then define (0, s*, u*) to be a Hopf poit for (R) if and only if there
exists an €9 > 0 and a C!- curve

(—eo+ p*, 1" + o) = (A(p), ¢(p)) € C x X

(Yc denotes the complexification of the real space Y ) of a pair of eigen-
value and corresponding eigenfunction, so called eigendata for —A+ uB
with

(1) (=A+ uB)(d(1)) = Mp)d(p), (A + uB)($(p) = Mu) ¢(1);

(1) AM(p*) = ip with 8 > 0;

(iii) Re(\) # 0 for all A € o(—A + p* B) \ {#i8};

(iv) ReX'(p*) # 0 (transversality).

A Hopf point (0, s*, u*) is the origin of a C°-curve of initial condi-
tions (ug, sg) for nontrivial periodic solutions. This basically follows
from a Theorem in [1], but the proof requires a little reinvestigation,
for the theorem is only stated for C%-nonlinearities f and then yields
a C'-curve of bifurcating periodic orbits. Since we are unable to meet
the C? requirement, we indicate briefly how to modify the proof, using
an implicit function theorem that only requires differentiability with
respect to one part of the arguments.

THEOREM 3.3. [Hopf-Bifurcation] Assume (0, s*, u*) is a Hopf point
for (R). Then there exists ¢, > 0 and a C°-curve

e € (—e1,e1) — (uole), so(e), ple), u(e)) € X* x RT xR

such that
(u,s)(;uo(e), sole€), u(e))



A Hopf bifurcation with Pushchino dynamics 245

is a periodic solution of (R) with (primitive) period p(e).
Moreover ug(0) = 0, : s0(0) = s*,: p(0) = ﬂ p(0) = u and

I (uo(e), so(€) — s*)
c—0 €

= Red(y").

Proof. Using the similar arguments in the proof of Theorem 3.3
which is in [7], we obtain the above results. O

We now have to check (R) for Hopf points. For this we have to solve
the eigenvalue problem

——/Z(u,s) + uB(u,3) = Mu,s)
which by Proposition 3.1 is equivalent to

(A+Nu=p-(v'(s")s +uls*1) - G(, s%)
(4) As = p- (7'(8*) + uls)).

As a first result, we obtain that it suffices to find a unique purely
1mag1nd,ry e1genvalue A=1i1Fof (4) with 3 >0 for some p* in order for
(0,s*, u*) to be a Hopf point.

THEOREM 3.4. Assume that for ©* € R\ {0} the operator —A+
p#* B has a unique pair {£i3} of purely imaginary eigenvalues. Then
(0,s*,u*) is a Hopf point for (R).

Proof. Without loss of generality, let 8 > 0, and let ¢* be the (nor-
malized) eigenfunction of —A+ 1B with eigenvalue 14. We have to
show that (¢*,74) can be extended to a Cl-curve g — (é(p), Mp)) of
eigendata for —A + uB with A(u*) # 0.

For this let ¢* = (v, 30) € D(A) x R. First, we see that so # 0, for
otherwise, by (4), (A +13)vo = i3s¢G(-, s*) = 0, which is not possible
because A is symmetric. So without loss of generality, let s = 1. Then
by (4) E(vo,18, 1*) = 0, where

E:D(A)cXCXR-——-»X(;XC
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and

E(u, A, u)
= (A4 D= () + UG, = - (V(s7) + u(s)).

The equation E(u, A, u) = 0 is equivalent that X is an eigenvalue of
-4+ uB with eigenfunction (u,1). We want to apply the implicit
function theorem to E, and therefore have to check that E is in C!
and that

(5) D E(0,i8,10) € L(D(A)c xC,Xc x C) is an isomorphism.
Now it is easy to see that
DuE(u, A )it = ((A+ Nt = pi(s")G(-, s*), —p(s"))

(6)  DaE(u, A\ p)d = A(u,1)
D#E(u”\’ P‘)[‘ = _/}'(71(5*) + “(3*)) ’ (G(HS*)’ 1)

so E is C!. In addition, the mapping

Du ) E(tho, 18, u*)(4, X)
= ((A +iB)i — pri(s*) - G(-, %) + Mo, —u*ii(s®) + i)
is a compact perturbation of the mapping
(@, 3) — ((A + iﬂ)ﬁ,:\)
which is invertible. As a consequence, D, x)E(o,8, 1) is a Fredholm

operator of index 0. Thus to verify (5), it suffices to show that the
system

(A +18)a + Mpo = pu*i(s*)G(-, s*)
(7 X = p*a(s*)
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necessarily implies that @ = 0, A = 0. Thus let (4, 5\) be a solution of
(7), and define ¥ := vy — G(-,s*). Then

(8) (A+iB)i+ Ay =0
On the other hand, since ¥y solves (4) with A =8 and s = 1, we have
iBG(,s") = Atho + 18% = AYy + b0 +iBG(-, s7)

in the weak sense. Here é, is the delta-distribution centered at s. So
¥ 1s a solution to the equation

(9) (A4 + Bt = —on

and
(10) i = " (3'(s7) 4 (7)) = ™ (1T 4 (37) + Gls™, ).

Equation (9) implies that

1 1
-mwﬂ=/|mﬁnf+m/|mﬁ
0 JQ

Im (s /3/ |’(/)1

Now 7'(s*) and G(s*,s*) in (10) are real valued, therefore, since 8 # 0

1
(11) ;fAIWV=1

From (9) we can then calculate as fo 1A+ 18 —u(s*),
which together with (8), (9) and (11) 1mphes that

so that
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1
A(/ |w1|2~w%>=o,
0

which implies A= 0, for otherwise Im; = Imvyo = 0, which is a
contradiction. So we conclude that A = 0, and with this that also
@ =0.

We have thus shown (5), and therefore get a C*-curve y — ($(u),
A{p)) of eigendata such that ¢(p*) = ¢* and A(p*) = i8. It remains
to be shown that Re A'(p*) # 0. Let ¢(u) = (¥(g),1). Implicit differ-
entiation of E(v(p), A(p), 1) = 0 (see (6)) implies that

Dy Eto, i, 1) (8 (1), N (%))
= (6" + 9N - (6, s.1)

This means that the function @ := ¥'(x*) and A := X'(u*) satisfy the
equations

(12) (A4 iB)i — u*il(s")G(- ") + Ao = (7/(s%) + it(s*))G(-, 5°)

and

As a result

(13) Wra(st) + A = (%) + ™).
Putting (13) into (12) and using ¥ := ¢ — G(-, s*), as before, we
obtain

(A +iB)i+ My =0,
and from here with (9) that

/(A+lﬁ)¢’1u—/ ¥ (A +i8)a :—)\/ [1]? = — ui

where we have used (11) for the last step. We thus obtain A= pru(s*)
and from (13) that

A=Red=—u*(s*)>0.
O

We now need the following lemma in order to show the uniqueness of
*

nr.
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LEMMA 3.5. Let Gy be Green’s function for the operator A + i3.
Then the expression ReGy(s*, s*) is strictly decreasing in 8 € Rt
with

ReGo(s*,s*) = G(s*,s*), Blim ReGg(s™,s%) =0,
and Im Gg(s*,s*) < 0 for any 3 > 0.

Proof. The argument of the proof is similar to the Lemma 3.5 in [7].
O

Therefore, we have the following result.

THEOREM 3.6. Whenever (R) admits a stationary solution, there
is a unique p* > 0 such that (0,s*, u*) is a Hopf point.

Proof. We have only to show that the function from (w,3,u) to
E(u,i8, 1) has a unique zero with # > 0 and s > 0. This means
solving the system

(A+P)u=pu- (7’(5*) + u(s* )) -G, s7)
iB=q- <7'(s*) + wu(s* )) .

As before, with v := u — G(-, s*), this system is equivalent to the weak
system of equations

(A+i3)v = —b,.
(14) 3=y (f}"(s*)+G(S*,s*)+v(s*)).
Now the first equation in (14) has, for fixed 3 > 0, the unique

solution v = —Gy(-,5%). We are thus left with having to solve the
complex valued equation

i3 = p - (Y (%) + G(s*,8%) - Gg(s™,s%)).

Since 4'(s*) + G(s*,5*) is real valued, this is equivalent to the real
valued system

(15) (™) + G(s*.5*) — Re Gg(s* s*) = 0
(16) p-ImGg(s™,s")+ 5 =0.
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By 7'(s*) < 0, v'(s*) + G(s*,s*) > 0 and Lemma 3.5, the existence
of a unique solution (3, u*) of (15) and (16) with 8 > 0 and p¢* > 0
follows by an application of the mean value theorem. O

The following theorem summarizes what we have proved:

c1 — 2a 1

THEOREM 3.7. Assume that 0 < ——— & ——
2(cr + ¢2) (e + k)
(R). respectively (F), has a unique stationary solution (0, s*), respec-
tively (v*,s*), for all u > 0. Then there exists a unique p* > 0
such that the linearization —A + u*B has a purely imaginary pair of
cigenvalues. The point (0, s*, u*) is then a Hopf point for (R) and there
exists a C®-curve of nontrivial periodic orbits for (R), (F), respectively,
bifurcating from (0, s*, u*), (v*,s*, u*). respectively.

, so that

References

{. M. G. Crandall and P. H. Rabinowitz, The Hopf Bifurcation Theorem in Infinite
Dimensions, Arch. Rational Mech. Anal. 67 (1978), 53-72.
2. P. Fife, Current topics in reaction-diffusion systems, in Nonequilibrium Coop-
erative Phenomena in Physics and Related Fields, M. G. Velarde, ed. Plenum
Press, New York, 1984, pp. 371-441.
3. D. Henry, Geometric Theory of Semilinear Parabolic Equaticns, vol. 840 Sprin
ger, Lecture Notes in Mathematics, New York-Berlin, 1981.
4. J. P. Keener, A geometrical theory for sprral waves in excituble media, SIAM
J. Appl. Math. (1936), 1039-1056.

- Y. Nishiura and M. Mimura, Layer oscillations in reaction- Tiffusion systems,
SIAM J. Math. Anal. 18 (1987), 1726-1770.

6. A. Panfilov and J. Keener, Twisted scroll waves in Helercgeneous excitable
media, Internat. J. of Biturcation and Choas 3 (1993), 445-4.30.

- Y. M. Lee, R. Schaaf and R. Thompson, The Hopf Bifurcation tn a Parabolic
Free Boundary Problem, J. Comput. Appl. Math. 52 (1994), 305-324.

ot

-1

Department of Mathematics
Kyonggi University
Suwon,442-760 Korea



