STABILITY OF ISOMETRIES BETWEEN FINITE DIMENSIONAL HILBERT SPACES

KIL-WOUNG JUN AND DAL-WON PARK*

1. Introduction

It is a well-known classical result of Mazur and Ulam that an isometry T from a real Banach space X onto a real Banach space Y with T(0) = 0 is automatically linear[5]. A map T between Banach spaces X and Y is called an ϵ -bi-Lipschitz map if

$$(1 - \epsilon) \|x - y\| \le \|Tx - Ty\| \le (1 + \epsilon) \|x - y\| \text{ for } x, y \in X.$$

Jarosz[3] conjectured that if X, Y are real Banach spaces such that there is a surjective ϵ -bi-Lipschitz map between X and Y, then X and Y are linearly isomorphic for sufficiently small ϵ .

The above statement is known to be true for certain special classes of Banach spaces like uniform algebras [2]. It is also known that this is false, even for C(K) spaces, if we do not assume that ϵ is close to zero[1]. Mankiewicz [4] proved that if there is a surjective ϵ -bi-Lipschitz map between a Banach space X and a Hilbert space Y, then X and Y are linearly homeomorphic. In this note we show that if T is an ϵ -bi-Lipschitz map from a Hilbert space X onto a Hilbert space Y with $\dim X < \infty$, then there is an isometry from X onto Y which is near T.

2. The result

THEOREM. Let X and Y be real Hilbert spaces with dim $X < \infty$. If T is an ϵ -bi-Lipschitz map from X onto Y with T(0) = 0 and with $\epsilon \leq \epsilon_0$, then there is an isometry I from X onto Y for which $||Tx-Ix|| \leq \epsilon_0$.

Received November 1, 1993.

¹⁹⁹¹ Mathematics Subject Calssification: Primary 46 E 20

Key words and Phrases: Hilbert space, ε-bi-Lipschitz map

^{*} This work was partially supported by KOSEF, Grant No 91-08-00-01.

 $C(\epsilon)(\|x\|^{\frac{1}{2}} + \|x\|^{\frac{3}{2}})$ where ϵ_0 is an absolute constant and $C(\epsilon) \to 0$ as $\epsilon \to 0$.

Proof. We divide the proof into a number of simple steps and at various points of the proof we use inequalities involving ϵ which are valid only if ϵ is sufficiently small; in these circumstances we will merely assume that ϵ is near zero. Let $e_1, e_2, ..., e_n$ be an orthonormal basis of X. We denote the inner product in X and Y by (,).

STEP 1.

$$-6\sqrt{2}\epsilon - 18\epsilon^2 \le \left(\frac{Te_i}{\|Te_i\|}, \frac{Te_j}{\|Te_i\|}\right) \le 6\sqrt{2}\epsilon - 18\epsilon^2$$

for $i \neq j, i, j = 1, 2, ..., n$.

Proof. Let $i \neq j$ and i, j = 1, 2, ..., n. Since T is an ϵ -bi-Lipschitz map, $1 - \epsilon \leq ||Te_i|| \leq 1 + \epsilon$ and

$$\sqrt{2}(1-\epsilon) \le ||Te_i - Te_i|| \le \sqrt{2}(1+\epsilon).$$

Thus we get

$$\left\| \frac{Te_i}{\|Te_i\|} - \frac{Te_j}{\|Te_j\|} \right\| \le \frac{1}{\|Te_j\|} (2\epsilon + (1+\epsilon)\sqrt{2})$$

$$\le \sqrt{2} + \frac{(2+2\sqrt{2})\epsilon}{1-\epsilon}$$

$$\le \sqrt{2} + 6\epsilon.$$

Also, we have

$$\begin{split} \left\| \frac{Te_i}{\|Te_i\|} - \frac{Te_j}{\|Te_j\|} \right\| &\geq \frac{1}{\|Te_j\|} \left\| \|Te_i - Te_j\| - \|Te_j\| - \|Te_i\| \right\| \\ &\geq \frac{1}{1+\epsilon} ((1-\epsilon)\sqrt{2} - 2\epsilon) \\ &\geq \sqrt{2} - 6\epsilon. \end{split}$$

By the above two inequalities, we have

$$\sqrt{2} - 6\epsilon \le \left\| \frac{Te_i}{\|Te_i\|} - \frac{Te_j}{\|Te_i\|} \right\| \le \sqrt{2} + 6\epsilon.$$

Hence

$$-6\sqrt{2}\epsilon - 18\epsilon^2 \leq \left(\frac{Te_i}{\|Te_i\|}, \frac{Te_j}{\|Te_j\|}\right) \leq 6\sqrt{2}\epsilon - 18\epsilon^2.$$

STEP 2. There is an orthonormal basis $f_1, f_2, ..., f_n$ of Y for which

$$||f_i - \frac{Te_i}{||Te_i||}|| \le C_i(\epsilon), i = 1, 2, ..., n$$

where $C_i(\epsilon) \to 0$ as $\epsilon \to 0$.

Proof. Put $f_1 = \frac{Te_1}{\|Te_1\|}$. Then $C_1(\epsilon) = 0$. Suppose $f_1, ..., f_m(m < n)$ are linearly independent such that $\|f_i\| = 1, (f_i, f_j) = 0$ for $i \neq j, i, j = 1, ..., m$ and

$$||f_i - \frac{Te_i}{||Te_i||}|| \le C_i(\epsilon), i = 1, 2, ..., m.$$

Let $Se_{m+1} = \{f \in Y | ||f|| = 1, (f, f_1) = \cdots = (f, f_m) = 0, \frac{Te_{m+1}}{||Te_{m+1}||} = \alpha_1 f_1 + \cdots + \alpha_m f_m + \beta f, \quad \alpha_1, \alpha_2, \ldots, \alpha_m, \beta \text{ are real numbers } \}$. Suppose that Se_{m+1} is empty. Without loss of generality we can assume that $\frac{Te_{m+1}}{||Te_{m+1}||} = \alpha_1 f_1 + \cdots + \alpha_m f_m$. Then, by Schwarz inequality and Step 1,

$$\left| \left(\frac{Te_{m+1}}{\|Te_{m+1}\|}, f_j \right) \right| \le 6\sqrt{2}\epsilon + 18\epsilon^2 + C_j(\epsilon).$$

Thus we have

$$\left(\frac{Te_{m+1}}{\|Te_{m+1}\|}, \frac{Te_{m+1}}{\|Te_{m+1}\|}\right) \leq (|\alpha_1| + \dots + |\alpha_m|)(6\sqrt{2}\epsilon + 18\epsilon^2 + C_1(\epsilon) + \dots + C_m(\epsilon))
+ \dots + C_m(\epsilon))
< m(6\sqrt{2}\epsilon + 18\epsilon^2 + C_1(\epsilon) + \dots + C_m(\epsilon))
< 1.$$

This contradicts that $\|\frac{Te_{m+1}}{\|Te_{m+1}\|}\| = 1$. Thus $Se_{m+1} \neq \phi$. We choose a $f \in Se_{m+1}$ and let $f_{m+1} = f$. Thus dim $X \leq \dim Y$. Since T

is an ϵ -bi-Lipschitz map, dim $Y \leq \dim X$. Hence $f_1, f_2, ..., f_n$ is an orthonormal basis of Y. Since $\frac{Te_{m+1}}{\|Te_{m+1}\|} = \alpha_1 f_1 + \cdots + \alpha_m f_m + \beta f_{m+1}$,

$$||f_{m+1} - \frac{Te_{m+1}}{||Te_{m+1}||}||^2 = 2 - 2\beta.$$

Since $(\frac{Te_{m+1}}{\|Te_{m+1}\|}, f_i) = \alpha_i, i = 1, 2, ..., m$, we have $|\alpha_i| \le 6\sqrt{2}\epsilon + 18\epsilon^2 + C_i(\epsilon)$. Thus

$$\beta^2 = 1 - \alpha_1^2 - \alpha_2^2 - \dots - \alpha_m^2$$

$$\geq 1 - m(6\sqrt{2}\epsilon + 18\epsilon^2) - (C_1(\epsilon) + C_2(\epsilon) + \dots + C_m(\epsilon)).$$

 $_{
m Hence}$

$$2 - 2\beta \le 2 - 2\beta^2$$

$$\le 2m(6\sqrt{2}\epsilon + 18\epsilon^2) + 2(C_1(\epsilon) + C_2(\epsilon) + \dots + C_m(\epsilon)).$$

Let
$$C_{m+1}(\epsilon) = \sqrt{2m(6\sqrt{2}\epsilon + 18\epsilon^2) + 2(C_1(\epsilon) + C_2(\epsilon) + \cdots + C_m(\epsilon))}$$
.
Then $C_{m+1}(\epsilon) \to 0$ as $\epsilon \to 0$.

STEP 3. $\|\lambda Tx - T\lambda x\| \le 4\sqrt{\epsilon}(|\lambda|^{\frac{1}{2}} + |\lambda|^{\frac{3}{2}})\|x\|$ for $\lambda \in R$ and $\|Tx + Ty - T(x+y)\| \le 4\sqrt{\epsilon}(\|x\| + \|y\|)$.

Proof. Since T is an ϵ -bi-Lipschitz map,

$$(1 - \epsilon)|1 - \lambda|||x|| \le ||Tx - T\lambda x|| \le (1 + \epsilon)|1 - \lambda|||x||.$$

A routine calculation shows that

$$(1 - \epsilon)^{2} (1 - \lambda)^{2} ||x||^{2} - ||Tx||^{2} - ||T\lambda x||^{2}$$

$$\leq -2(Tx, T\lambda x)$$

$$\leq (1 + \epsilon)^{2} (1 - \lambda)^{2} ||x||^{2} - ||Tx||^{2} - ||T\lambda x||^{2}.$$

So we have

$$\|\lambda Tx - T\lambda x\| \le 4\|\lambda\|^{\frac{3}{2}} \sqrt{\epsilon} \|x\| \text{ for } \lambda \ge 1, \lambda \le -1.$$

Hence for $-1 < \lambda < 1$, we get

$$\|\lambda Tx - T\lambda x\| \le 4|\lambda|^{\frac{1}{2}} \sqrt{\epsilon} \|x\|.$$

Thus for any real number λ , we get

$$||\lambda Tx - T\lambda x|| \le 4\sqrt{\epsilon}(|\lambda|^{\frac{1}{2}} + |\lambda|^{\frac{3}{2}})||x||.$$

It is easy to see that

$$(1 - \epsilon)^{2} ||y||^{2} - ||Tx||^{2} - ||T(x + y)||^{2}$$

$$\leq -2(Tx, T(x + y))$$

$$\leq (1 + \epsilon)^{2} ||y||^{2} - ||Tx||^{2} - ||T(x + y)||^{2},$$

$$(1 - \epsilon)^{2} ||x||^{2} - ||Ty||^{2} - ||T(x + y)||^{2}$$

$$\leq -2(Ty, T(x + y))$$

$$\leq (1 + \epsilon)^{2} ||x||^{2} - ||Ty||^{2} - ||T(x + y)||^{2}$$

and

$$(1 - \epsilon)^{2} ||x - y||^{2} - ||Tx||^{2} - ||Ty||^{2}$$

$$\leq -2(Tx, Ty)$$

$$\leq (1 + \epsilon)^{2} ||x - y||^{2} - ||Tx||^{2} - ||Ty||^{2}.$$

So we have

$$||Tx + Ty - T(x + y)|| \le 4\sqrt{\epsilon}(||x|| + ||y||).$$

STEP 4. There is an isometry I from X onto Y for which $||Ix - Tx|| \le C(\epsilon)(||x||^{\frac{1}{2}} + ||x||^{\frac{3}{2}})$ where $C(\epsilon) \to 0$ as $\epsilon \to 0$.

Proof. For $x \in X$, there are $\alpha_1, ..., \alpha_n$ such that $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$. We define $I: X \longrightarrow Y$ by $Ix = \alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_n f_n$. Then I is an isometry. By Step 3, we have

$$(1) ||T(\alpha_1 e_1 + \dots + \alpha_n e_n) - T(\alpha_1 e_1) - \dots - T(\alpha_n e_n)|| \le 8n\sqrt{\epsilon}||x||.$$

By Step 2, we get

(2)

$$||Te_i - f_i|| \le ||Te_i - \frac{Te_i}{||Te_i||}|| + ||\frac{Te_i}{||Te_i||} - f_i|| \le \epsilon + C_i(\epsilon) \text{ for } i = 1, 2, ..., n.$$

By (1), (2) and Step 3, we obtain

$$||Tx - Ix|| \le 8n\sqrt{\epsilon}||x|| + 4n\sqrt{\epsilon}\left(||x||^{\frac{1}{2}} + ||x||^{\frac{3}{2}}\right) + (n\epsilon + C_1(\epsilon) + \dots + C_n(\epsilon))n||x||.$$

Thus we have

$$||Tx - Ix|| \le C(\epsilon)(||x||^{\frac{1}{2}} + ||x||^{\frac{3}{2}})$$

where $C(\epsilon) = 12n\sqrt{\epsilon} + n^2\epsilon + n(C_1(\epsilon) + \cdots + C_n(\epsilon))$. This completes the proof of Step 4.

References

- I. Aharoni and L. Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 34 (1978), 281-283.
- K. Jarosz, Nonlinear generalizations of the Banach-Stone theorem, Studia Math. 313 (1989), 97-107.
- 3. K. Jarosz, Ultraproducts and small bound perturbations, Pacific Jour. Math. 148 (1991), 81-88.
- 4. P. Mankiewicz, On Lipschitz mappings between Fréchet space, Studia Math. 41 (1972), 225-241.
- S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris Sér 194 (1932), 946-948.

Kil-Woung Jun Department of Mathematics Chungnam National University Taejon 305-764, Korea

Dal-Won Park
Department of Mathematics Education
Kongju National University
Kongju 314-701, Korea