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ON THE HARRIS ERGODICITY OF
A CLASS OF MARKOV PROCESSES

CHANHO LEE

1. Introduction

Suppose {X,} is a Markov process taking values in some arbitrary
state space (S, F) with temporarily homogeneous transition probabil-
ities p™(z,A) = P(X, € 4A|Xo =12),2 € S, A € F. Write p(z, A) for
p'(z, A).

As usual, we require the function z — p(z. A) to be F-measurable
for every 4 € F.

We call a Markov process with n-step transition probability p™(z, A)
-1rreducible for some nontrivial o-finite measure p if whenever p(A) >
09

Z 27"p"(z,A) > 0 for every z € S.

n=1

A probability measure 7 is said to be invariant for p, or for the
Markov process X,,, if

(1) r(4) = /S *(dy)p(y, A), A€ F

It is important to know whether a Markov process is ergodic, i.e.,
whether there exists a unique invariant probability measure 7.

In this paper we are interested in asymptotics of irreducible Markov
processes generated by iterations of i.i.d. random maps.

It may be noted that every Markov process on a Borel subset S of
a polish space (i.e., a complete separable metric space) may be repre-
sented by iterations of 1.i.d. random maps on 3 into S (Kifer [1986]).
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In this article the particular iterations are of the form
(2) Xn+1 :f(Xn)+5n+la n >0

where {€n} are i.i.d. random variables on R}, f an R! valued function
on § = R', X, arbitrary (but independent of {¢,}). Here F = B(R")
is the class of Borel sets of R!.

Petruccelli and Woolford [1984] have proved that if f is the function
defined by

f(z) = azl(z<0) + Bzl(;>0), €1 has a density

which is positive everywhere and E¢; = 0, then a < 1, # < 1 and
af3 < 1 are both necessary and sufficient for the existence of a unique
invariant probability measure 7.

In section 2, we derive a criterion for the ergodicity for general f.

2. Sufficient conditions for the ergodicity of a class of
Markov processes

Let {X,} be the Markov process in (2). We say the p(z,-) has the
strong Feller property if for every B € B(R'), p(z, B} is a continuous
function in z, and p(z,-) has the (weak) Feller property if for every
sequence x, in R' converging to z, p(x,,-) converges weakly to p(z,-)
as n — oo. It is of interest to establish conditions under which (2)
is Harris ergodic. For the general theory, we refer to Tweedie [1975],
[1983a).

Our main result is

THEOREM 2.1. For {X,} in (2), suppose f is a continuous function
on R', {e,} are iid having a density function g,(-) on R! which
is positive everywhere and Ecy = 0. Write @ = lim, . _ @ w =
: flo) 37— flz) =1 f(z)
llﬂar:——+—0c> Tz ‘B = hmz""c’o xz ’ _@ = l—I—H—lz—roo Tz

Then each of the followings is a sufficient condition for the existence

of a unique invariant probability measure 7 for {X,}:
i) a<1,B<1,8>0,a>0;
(i) 8<0,8<1,8>0,a> —coc;
(i) ¥< 1,4 <0, 8> —o0, a>0;
(iv) @<0,3<0,a-g<1.
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Before proving Theorem 2.1, we state a corollary which is an imme-
diate consequence of it.

COROLLARY 2.2. If both limits a = limym—oo L2, 4 = lim,_o
@, exist then a <1, 8 < 1, aff < 1 is a sufficient condition for the

existence of a unique invariant probability for {X,}.

First let us state a proposition whose proof is straightforward and,
therefore, omitted.

PRropoOsITION 2.3. For {X,,} in (2),
(a) p(z,-) has the Feller property if f is continuous. (b) p(z,-) has the
strong Feller property if
(1) the distribution Q of €1 is absolutely continuous with respect
to the Lebesgue measure with a density and
(ii) f is continuous.

We state another proposition proved by Tweedie [1975], [1983a] as
follows:

PROPOSITION 2.4. Let the state space S be a metric space with
F = B(S)-Borel o field. Assume p(z,-) has the Feller property and p
is p-irreducible with respect to a nontrivial o-finite measure . Then
the Markov process with transition probability p(z, -} is Harris ergodic
if there exist a nonnegative measurable function g, and a compact set
K, and a constant ¢ > 0 such that

/g(y).v(w’dy) <g(z)—c  VvreKC

Sup/g(y)P(:v,dy) < oo.
€K

Proof of Theorem 2.1. For v € R', A € B(R'),

p(z,4) = P(f(x) + 21 € A) = /Agm ~ f(z))dt.

Since f is continuous, p(z,-) has the Feller property.
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For any given pair of numbers a, S such that a < 1,8 < 1, a8 < 1,

it is easy to see that there exist a > 0, b > 0 such that
1>8>—(ab™'), 1 >a > —(ba™!).

(2) = az ifz>0
T=Vble| ifz<o.

First let z > 0. Then
[ Pe.d)o0) =Bl (Xars) | Xa = 2)

—a / yar(y)dy + af(z) a(y)dy
{y+f(z)>0} {y+f(2)>0)

b / yar(y) dy — bf(z) 0(y) dy
{y+f(z)<0} {y+f(z)<o}

Choose 8, 0 < § < 1 such that 8+ 6 < 1. Since § = lim;—o ﬂrﬂ,

B=lm,__ ﬂ:—), there exists My such that
B-0)z < flz)<(B+8)x Ve> M,
If >0, then

/p(a:,dy)g(y) <C+a (E+ (1 + (—bl> 9) z for some C > 0.

Choose 0 < 6’ < 8 such that ﬁ+(1+ )8’ < 1. Since ﬂ—l—(l—f— 18" < 1,
we can choose M; > My such that

B> —oo and /P(m,dy)g(y) <g(z)—-1 Vo> M.

If 6 <0, B > —oo and B > —(ab™'), there exists ¢; > 0 such that
-0 < a-— -0, and then we can choose 8,0 < 8 < 1, such that

—= 0
g+8<0, 9<Tl’
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so that
‘/ML@MW)SC+M—ﬂH{/ 01(y) dy
{y+f(z) <0}
+(b0—91).2:/ g1(y)dy Yz > M,.
{y+f(z)<0}

Since f{y+f(1:)<0} 91(y)dy /1 as  — oo, there exists M, > M, such
that z > M, implies

/P(x,dy)g(y) <g(z)-1.

Next let ¢ < 0. Choose 8, 0 < 6 < 1, such that @+ 6 < 1. Since
lim,__ o —f-(;—) =@, lim f—(zﬂ = a, there exists My(> 0) such that

e T = OO

T < —Mp implies (@ + 8)z < f(z) < (a - 8)z. If @ > 0, then

- a
/p(z,dy)g(y) <C —br (a + (L + -5) 9)
for some constant ¢ > 0. Choose 0 < 8' < 8 such that
— a 7
T+ ( 14 3) 9 <1.
By our choice of #', there exists M; > My such that z < —Mj; implies

blz| (a-+(1+%)9) <blz|—-C—1

and thus

[ pe oty < el -1
=g(z)—1 for < —Ms.
fa <0, a>-—00anda < :b(;, there exists 8, > 0 such that
—aq < b — 6, and then we can choose 6, 0 < 6 < 1, such that

6,

a

o+ 68 <0, 0 <
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so that
/p(x, dy)g(y)dy

< C - aglz| 91(y) dy
{y+f(z)>0}

+ a9|x|/ ¢1(y)dy for some C >0
y+f(z)>0}
S CH+(b—61)z| 91(y) + abz| 91(y) dy
{y+7(2)>0} {y+£(2)>0}

< C 4 blz| + (ab - 8))]z| 91(y) dy.
{y+f(z)>0}

Since f{y+f(z)>0} g91(y)dy /' 1 asz — —oo0, there exists My > M; such
that r < —~M, implies

/p(r,dy)g(y) < blz| -1
=g(r)—1 for z < -—M,.

Let M = max{M,, M,}. Take K = [~M,M]. Then

/pu,dy)g(y) Cgle)-1 for zek

In what follows, we see that the arguments above can fit in each
case of (i), (ii),(iii) and(iv) with appropriate constants a,b and M.
Case(i). Since 0 <a <a <1, 0<,3<ﬂ<ldndaﬁ<1 there exist
a; >0,by >0suchthat 1 > 5 > —(ayby ™ ), 1>a > —(bya; 7).

For r > 0, the first part of arguments above (with 4 > 0) and for
z < 0, the third part (with @ > 0) can be directly applied, respectively,
to conclude that

/p(;v,dy)g(y) <g(z)—1 for z€ K°,

here

_ { ayz x>0
9(z) = b|lz| ifax<0.
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Case(ii). Since—oo<g§2i<0<1,0§ﬁ§7<1,and
af < @B < 1, there exist ay > 0,b; > 0 such that 1 > 3 > —(azby ™),
1>a>—(ba™ ).

For z > 0, the first part and for z < 0, the last part of arguments
(with @ <@ < 0) can be applied, respectively.

Case(iii) By the symmetric argument for @, 3 us case(ii), we can reach
the same conclusion. B

Case(iv) Since a <&@ < 0 < 1, B < B<0<1 nd af3 <1 ,there exist
ag > 0,by > 0 such that 1 >§_ > ——(a4b4*1), 1>a> —(b4a4"1).

For x > 0, the second part (with B< A <0 and for x <0, the last
part (with @ < 0) of arguments can be applied, respectively.

On the other hand,

/g(y)p(a*,dy)f < /!g(f + f(x))gi(t)] dt
<o [ (It + LF)Dlga (1)
{1+ f(x)>0)

b / (1]~ [f(x))ar (t) dt
{t+f(2)<0}
<B<oo for €k

for some B, since Ele;1| < oo and f is contininous. Since the &, are
assumed to have density > 0 everywhere, the process is Lebesgue
measure irreducible and aperiodic. Thus, by Proposition 2.4, {X.}is

ergodic. Q.E.D.

REMARK. Even when f is not necessarily continuous, under the
same hypotheses of Theorem 2.1, {X,} is ergodic if f is compact (i.e.,
f sends compact sets into relatively compact sets) and g;(-) is lower
semi-continuous. See Tweedie (1983a, Theorem: 4, p. 265).
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