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UNIFIED JACKKNIFE ESTIMATION
FOR PARAMETER CHANGES IN
AN EXPONENTIAL DISTRIBUTION

JUNGSOO Woo

1. Introduction

Many authors have utilized an exponential distribution because of
its wide applicability in reliability engineering and statistical inferences
(see Bain & Engelhart(1987) and Saunders & Mann(1985)). Here we
are considering the parametric estmation in an exponential distribution
when its scale and location parameters are linear functions of a known
exposure level ¢, which often occurs in the engineering and physical
phenomena.

The purpose of this work is to estimate the effects on the scale
and location parameters in the exponential distribution when both
parameters change a function of environmental dosage, say ¢. First,
we assume an exponential model and estimate the parameters based
upon the complete or truncated samples by the maximum likelihood
and jackknife methods. The derived estimators will be shown to be
asymptotically unbiased and mean square error{ MSE)-consistent under
a niced conditiomn.

Throughout the numerical evaluations of biases and MSE’s of the
maximum likelihood estimators and its jackknife estimators for the
scale and location parameters in the small sample sizes, the biases and
efficiencies of the proposed estimators will be compared each other.
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2. One parameter exponential distribution

We are considering an exponential distribution with the pdf
; 1 x ,
: = —— it
flz;0(t)) (D) exp { a(t)}’ x>0, oft) >0,

written by X ~ EXP(o(t))

Here we are considering a unified estimation for the parameter chan-
ge of exposure levels or times in one parameter exponential distribution
even when the parameter is a polynomial of ¢;

o(t)=bo+by-t+ - +b-t", +>0, b; >0, :=0,1,---,r

2.1 The complete samples

Assume X, - - y Xn; j be a simple random sample{SRS) taken from
X; ~ EXP(o(t ])) i= 1 - ,r+1, and X,,--- , X4, be independent,
¥ # tx for i # k.

Define the following notation:

1 4 2.t
1 1 2 ...t
I ST U

By the maximum likelihood method, we can obtain the maximum

likelihood estimators(MLE) for b;;

—1 < +1
oy det[td ¢! ,X,,tf o]
b’ = y ) = D) 1a » Ty
det [t ,tﬂ
where X ; = % hy Xpiyi=1, -+ r+1.
The expectations and variances of these estimators b( ) =0, --,r,

are given by

(b;l ) ) =b; and

. . 1 1 r
|4 4R(I;(l)) i m(tk)detz [t? ' t] ’ f+ » ’ti]i;ék
’ AR paes nk(let2[t?, e Lt ’

where det [tV,- - ,t{—l,tf“ -+ ,tI]i%k is a minor determinant elimi-
nated k-row and j-column in the determinant, det [t?,--. 7.

Therefore, we get the following.
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consistent estimators of b;, respectively.

2.2 The truncated samples

For given t; # ty fori # k, 1,--- r+1,let Xyj.--- , Xy, 5, -+, X, j be
the truncated random sample(TRS) taken from X; ~ EXP(s(t;)), and
X1, -+ ,,Xr41 be independent, where X,j,--- , Xx, j are dead items or
item of failures and Xk, ,;, -, Xy, ; are alive items or runouts, j =
1,---, r+1, and

U(t)=b0+blf++brtr

The likelihood functions are given by

k; n;

T RS AY

1=1 i::kj+l

and hence, the MLE's 135-2) for b;,] = 0,--- 1, are

52 _ det [t0, - #17 X i fhi 61T 1]
7 det [t;, -, t;] '

If we assume the truncated number K; - 1 follows a Poisson distri-
bution with mean A; and K;’s are independent, j = 1,--- ,r+1, then

the expectations and variances of 5;2), j = 0,---,r, are given by

E(b{Y)
_Zhmgbmdet [0 87 (1- exp (M) matp/ XML A )
det[t, - 7]
r A(2‘
VARG
. -1 +1
CXpHidet [, 87t ]

det [t9,- - ,17]
{nm(nm + DAAm k) — nfn(l —  exp (—/\m))z//\fn}az(tm),

where A(Apikn) = Yoo o Am exp (=An)/((z + 1)(z + 1)1).
Therefore, we get the following.
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PROPOSITION 2. If every truncated number K - 1 follows a Poisson
distribution with sufficient large mean A; and K j’s are independent, j =

1. ,r+1, then the MLE’s l;§-2),j = {,- - ,r are asymptotically unbiased
and MSE-consistent estimators of b,, respectively.

3. Two parameter exponential distribution

Here we are considering two parameter exponential distribution with

the pdf

r — p(t)

(D) ), x> p(t), a(t) >0,

, ) 1
r;o(t),u(t)) = — ex -
flaso(0),u(t) =~ exp (
written by X ~ EXP( o(t), u(t) ).
We are considering a unified jackknife estimation for the parameter
change exposure levels or times in two parameter exponential distribu-
tion even when two parameters are polynomials of ¢

o(t) =bo+by t+-- +b -t
w(t)=ag+a;-t+ - +a,-t",

where t >0, a; >0, b, >0, : =0,1,--- . r.

3.1 The complete samples

3.1.A The maximum likelihood method

Assume X, - -- » Xn; j be a SRS taken from X; ~ EXP(o(t;), u(¢;)),
J=1, -, r+1, and X, .-, X,4; be independent, ¢, # tr for every
1 # k.

By the maximum likelihood method, we can obtain the MLE’s of a;
and b;, ] =0,1,---1;

o ettt 0 X )
7 det [t2,- - ,¢7]

Y _dEt [t?’ . ,tf_l,E - X(l)i7t£+1v e ’t”
g det[t?, .- 7]

1
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where X(1);, ] = 1,--,r+1, is the smallest order statistic among Xij,
n; -
The expectations and variances of these MLE’s &gs) and I;g's)’ ] =
0,1,---,r, are given by

U =1 .7 Jj+1 r
~(3) det [¢?, -+, #1747 /ny, 8] et
FEla: = a; + b ,
&7 = o Z ¢ det[t, - ,¢7]

r+1 det?[t?, .. 4T 4t L S,

ndet? [t?,n- ,tf] ’

r -1 1+1
)~ S el ]
’ k=0 det[t?,--- "tlr]
r+l (ng ~ 1)*det? [t?,--- t,j_l,tfﬂy"‘ 7]

b 13y _ 11i#k
VARB] = 3 ot (t) nZdet? [0, 1] '
k=1 AR

Therefore, by taking limits for those expressions.

PROPOSITION 3. The MLE's &\ and 8", j = 0,1, - r, are asymp-
totically unbiased and MSE-consistent ethmatnrs for a; and b;, respec-
tively.

3.1.B The jackknife method

By dehmtlon of the jackknife method, we can obtain the jackknife
estimators of 4 a ) and b( ) , foreveryj =10,1, .- ,r,

J(@") =nal® - (n. - Dal® !
det [t 71 ((2n. = DX(); = (n. = DX(p,), 811, 17

det [t?, ... tT]

and

T = nb® — (n. - )53~
det [t?, e ,t{'l, (n?, -(2n. - I)X(l)i + (n. — I)X(2),-),ti:+l,~ . ,t:']
- n. det [t?,-~~ ,t{]
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where n. = n; +ng + -+ + npqq.

Also, the expectations and variances of these jackknife estimators
can be obtained by, for every j = 0,1,---

’r’

bl

B =05 gy 2

(n. — n,-‘)ti/{n,‘(n,‘ - 1)},tf+l,... 7],

1

1 r+1
VAR[J(&§3))] :77,_2det2 [t(-) .“ t'.'] kz: gz(tk){(2nA - 1)(le —_ 1)2
i’ LR

+(n. = 1)*(2nf — 2ny + 1)}/{ni(nk - 1)2}

27,0 7=1 ,j+1 r
det®[t], -+ #1770 #] ,---,ti]#k,

(3)
E[J(b})] = P Fr—— Zbkdet
{n.(n it 1) }t [nini = 1)}, 484 ,t7] and
) 1 -
’ 3y = . 2t {nn? . —2)n.
VAR = — e — ;a (te){n nk + (n. = 2)n

—(2n. + 1)*n; — (n2=2n. — 2)}/{ni(nk — 1)2}
2740 J—1 45+1 T
det?[t], .- #7417 .. ,t,»],.#k.
Therefore, by taking limits,

PROPOSITION 4. The jackknife estimators J(Zzgs)) and J(Z:g”),j =
0,- -+ ,r, are asymptotically unbiased and MSE-consistent estimators for
a;j and b;, respectively.

Biases and mean square errors(MSE) of the ML estimators and their

Jackknife estimators for a;’s and b;’s in the small complete samples can
be numerically evaluated.
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3.2 The truncated samples

For given t; # t; for ¢ # k, 1,2,-- - r+1, let Xijooo s Xy g Xy
be the the TRS taken from X; ~ EXP(o (t;), p(t ), and XIJ,--- s Xk 5

are dead items or items of fallures and Xg; 415, -+, Xy, ; are alive items
or runouts, j =1, --- ;7 4+ 1, and Xy,---, X,4; be independnet.
The likelihood functions are given by
L(a,b|t;)
. Xy ol (t;)
. si— ot

H exp { - ; X — 1l H exp { _ f_J__&_L}

11l 45( U(tj)

=1 t=k; 41

and hence, the MLE’s a ) and 55-4) for a; and b;, j = 0, - - 1, are given
by

~1 i+1 -

A4 Cdet[td, - T Xy, 4]

; and
7 det[t], -+ #7]

o= i .
e _det[td, 7 (X = X))
! det [t0, - 7]
If we assume the truncated number K; -1 follows a Poisson distri-
bution with mean A;, j =1,--- ,» + 1 and K;'s are independent, then

. . ~ (4 .
the expectatlons and variances of (l; ), 7 =0,1,---,r, are the same as

those of @; (3) , because the &% and d§-4) are equal and the expectations
and variances of b]« D are given by, for j = 0,1,--- ,r,
E({M)
 Yheobk det [0 27 (n; — 1)(1 - exp (A tE/x, 8F ]
B det [t?, ... t7] ’
VAR(BY)
r+1
Ee‘tz—‘”_“ Z () {nm(nm = DA k)

— (o — 1)? (1_ exp(qm))?/xfn} det? [t9,.. ¢i=1 g+t . e

where A(Ay k) =300 /\fnexp(-/\m)/((m + 1)z + ).

From the expectations and variances, we get the following.
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PROPOSITION 5. If every truncated number K; -1 follows a Poisson
distribution with sufficient large mean \; and K;’s are independent, j
= 1,--.,r, then the MLE’s d;“ and 354) of a; and bj, j = o, --,r, are
asymptotically unbiased and MSE-consistent, respectively.

Biases and MSE’s for the truncated ML estimator for the scale pa-
rameter in small truncated samples can also numerically evaluated.
Throughout the exact numerical evaluations of biases and MSE’s, the
Jackknife technique is very useful in the bias reduction, but MLE’s are
more efficient in the small samples than truncated ML-estimators and
the jackknife estimators.
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