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ON PERTURBATION OF ROOTS OF POLYNOMIALS
BY NEWTON’S INTERPOLATION FORMULA

Young Kou PARK

1. Introduction

Much research has been done to estimate the magnitudes of the
changes of the roots from the perturbed polynomials. For more infor-
mation and references on such work, see [2,4,5.10,17].

In 1984 and 1990 Tulovsky14,15] treated this problem by using New-
ton’s interpolation formula and Rouche’s Theorem. In our work, the
approach used follows closely that of Tulovskyi14,15].

Let p(z) = (¢—¢q1) (2 —¢n) be a polynomial of degree n with roots
qi,.-.,qn. We denote by @, = {q1,...,qn} the set of roots p(z). And
let r(z) be a perturbing polynomial of degree <. n — 1. Tulovsky[14,15]
proposed and solved the following problems:

Let Gi1,...,4n be the roots of the perturbed polynomial p(z) + r(z)
and let p > 0 be a given number. Then what are necessary and suffi-
cient conditions on r(z) so that

(1.1) lgi — gil <p, i=12,....,n7

Tulovsky showed that (see Theorem 1.2) it is possible to give nec-
essary conditions and sufficient conditions analogous to them for (1.1)
to be satisfied. For the proof, he introduced for each subset 3 C Qn,
a polynomial Ps(p, |¢; — q;|) of variables p and |¢; — ¢;{, (which satisfy
the specific properties which are specified in section 3 ), where 7, j =
1,2,...,n and i # j. Using the properties (3.2) of Ps(p, |¢i — ¢;l),
Tulovsky gave the following result by Newton’s interpolation formula:
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THEOREM 1.2. (Tulovsky[14,15]) Let p(z) = (z —q1) - (2 — gn),
degree r(z) <n—1, p(z)+r(z) = (z=§) (2 — Gn). For given
p > 0, if the roots §y,...,4n of p(z) + r(z) can be indexed in such a
way that |¢; — §i| < p, 7 =1,2,...,n, then for any nonempty subset
B =1{qi, . qi, } € Qu, the following cstimate holds;

i8] < Ps(p,lgi — q;1) ,

where r[j3] is the (m — 1)-th divided difference of r(z), calculated at
the points q;,,...q;,, -

Conversely, if |r[8]| < Pg(p, |qi — g;|) for all nonemnpty subsets 3 C
(Qn, then there exists some constant C'(n) depending only on n so that
the roots ¢1,...,qn of p(z) + r(z) can be indexed in such a way that

|(]1' _qi| S C(TI)P, = 1727"'7n'

[t turns out that from the polynomials Ps(p, |¢;—¢;!) given in [14,15],
it would be very complicated to find explicitly the constant C(n) which
is given in the converse part of Theorem (1.2) and Tulovsky does not
give an estimate for C'(n). Hence the main purpose of this work is to
solve the following problems:

A). Find polynomials [r[8]| < Ps{p.|q: — g;|) for all nonempty sub-
sets 3 C @, which satisfy the properties given in (3.2), that are in
some sense minimal,

B). From the minimal polynomials Ps(p, |¢:i — ¢;]), estimate the con-
stant C'(n) in the above theorem, and determine asymiptotic properties

of C'(n) grow as n — oo ?

2. Preliminaries

Most of the work in this section is devoted to deriving a new formula
for the divided difference r[§]. Before proceeding a short comment on
notation and some known results from the theory of divided differences
arc needed. The most detailed exposition of their properties can be
found in Milne-Thomson{12], The Calculus of Finite Differences. For
other references on the divided difference, see [6,8,9].
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DEFINITION 2.1. Let p(z) be a polynomial in the complex variable
z. The first divided difference of p(z) is denoted by the relation

z0) —p(z1,
plz0,21] = Plzo) —pa1,

20 — 21
The n-th divided difference is defined by induction in terms of the
(n-1)-th one by the formula

(21) p[Zo,. N 7211] - p[zO,v' . 7211—27271] _P[Z(Ja” . ’Zn—2azn—-1].
Zn — Tp-1

In order to derive a new formula for r[3] which is useful in studying
perturbation of roots, we need the following lemma.

LEMMA 2.2, [6,12]

1 p(2)
ey Zn] = =— dz,
plaocanl = o [ P e

where the points zp,. .., z, lie inside the contcur T.

By Cauchy’s integral formula, we have the following estimate;
o .
(2.2) plz0, -+, 2all < = sup(Ip™(2)]),
n. :ehD

where D is any convex region in the complex plane, containing zy, ...,
zn. For n+1 coincident arguments zq, we obtain the equality

1
(2.3) plzo, ..., 2n] = gp(")(zo)-

If p(z) is a polynomial of degree n, then by Newton's interpolation
formula, p(z) can be reconstructed uniquely from the values of the

divided differences at zp, ..., 2, as follows:

) = plzo] +plzo, z1)(z = 20) + - +plo, ... 2n)(z —20) - (2 = zn1).

[

Pl

For more information and references to these discoveries, see [6,12].
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Now we will follow some notations from Tulovsky|15] and [13]. Let
p(z) be a polynomial with degree n. we denote the set of roots of
p(z) by Qn = {q1,...,qn}, the letters «, 3,7, ... will denote subsets of
Qn, and |a|,|8],|7],... the number of elements in these subsets. For
o C Qn we denote by pla] the divided difference of p(z), calculated at
the points ¢; € o. If & =, then p[a] = 0. If «, 3,7, ... are subsets of
(n, then we shall denote by o', 8',4',... complements of these subsets
in Q. We set for any a C Q,,

(z=¢)"=[[(=a), (z-0)%=1fora=09,

o

(¢-9°=[[(e-@) (-9 =1fora=0.
gi€x
REMARK 2.3. If a polynomial p(z) has multiple roots, then each
root must be counted in the set ), as many times as its multiplicity,
and any subset a of (., may contain in this case some copies of this
multiple roots, while all other copies of this multiple roots will be
contained in the complement o',

Now for the divided difference of the perturbing polynomial for r|z],
we will start to construct a new formula for r[3] in terms of ¢; — §;.
From Lemma 2.2 and (2.3), we obtain the following results.

LEMMA 2.4,
0 fm<n-—1,
1 (;_p])...(z_p,n)d7: . 1 fm=n-1,
i Jr (z—q1) (2 — qn) Zq —p)  ifm=n.
=1 ’
where I" is a contour contaming qi, ..., qn.

From Lemma 2.2 and Lemma 2.4, we get the following result.
LEMMA 2.5. Ifp(z) = (= — q1)(z — q2)(=z — ¢3), deg r(z) <2 and
pz)+r(z) =(z—q )z —g2)(z — g3). then
rlas] =(¢i — @1)(gi — ¢2)(gi — @a) for 1 <4 <3,
rlgs ¢5] =(q0 = G)gi — @) + (05~ )(q5 — @) + (0 — §i)gj — §5)
for 1 <5,k <3andi#j #k,
rlar, 92, 93] =(q1 — 1) + (@2 — G2) + (g3 — Ga).
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REMARK 2.6. Let Qn = {q1,...,9n} be a fixed set. Then for any
subset {qi,qj,qk,...} C Qn, we shall always set ¢ < j < k < ---
throughout our paper.

Now we will define (g, — §)¥ as follows; for any subset @ C 4 such

that |ﬁ| =m<n, set @ = {qa“qaz,-.-}’ g = {qcl’chu-} C Qn.
Choose v = {chl,q%,...,chly‘} C f'sothat |v|=n+1-m—lal,

then we will define
(ga — §)" = (qcn1 —4c;, M ai, — de;, )+ '(Qa.‘lyl - QC,'M)

so that i1 = ji1, i2 = j2 — 1,..., ¢}y = Jju»| — |v| + 1. Here we also set
for any a,v C @n,

. 1 for|v|==0
_— v o
(0 = 9) {0 for Ju| < 0.
The next result is basic to the results in this paper. For our work

we need a formula for r[f] in terms of differences ¢; — §;.

THEOREM 2.7. Suppose that p(z) = (z—q1)---(z2—¢n), deg r(z) <
n—1pz)+r(z)=(z— @) (2 —%)mde—Mu-,%}TmH
for any subset 3 C Q, such that || = m < n, we have

(z=q1) (2 = Gn)
2 = :
(2.4) r (4] o / o q)ﬂ dz
= Y (g-9*° > (¢a — 9)".
lo|>1 vCp
aCp |[v|=n+1—m—|c|

REMARK 2.8. Since r(z)=(2—§¢1)---(z—dn)—(2—q1) - (2 —qn):
the first equality in (2.4) follows trivially from Lemma 2.2. What needs
to be established is the second equality.

Proof. (Theorem 2.7.) We are going to prove the theorem by induc-
tion on n. lf n = 3, by Lemma 2.5, (2.4) is certainly solid. Now assume
that it is true for n — 1 and that m < n. Clearly it is enough to show
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that for any subset 3 = {q1,...,¢m} C Qn,m < n, {2.4) is satisfied.

From Lemma 2.2, for a contour I' containing ¢i,. .., ¢m, we get
L[ =) (=)
2m Jr(z=q1) (2~ qm)
(2.5) L ) God) g,
27t Jr (2= q2)- (2 = gm)
) . 1 (2“42) ( Qn)
2.6 + - --—-/ dz.
(2.8) = a3 rz=q) (2= gqm)

Take Qn-1 = {q2....,qn}, B = {¢2,...,qm} and apply the induc-
tion hypothesis to (2.5) to obtain

1 [ (z=G2) (2= dn) i ) )"
1 , ~dz= ) (¢—4§)* (g2 = )"
27t Jr(z —q2) (2 = qm) |L,|Z>1 ) uCQij/ﬂ |

oCB lv|=n+1-m—]al

For the second part (2.6),

(=) (2= dn)

r(z—aq) (2 —qm)
_ L G m)z @) (2= @)z = Gma2) (2= )
B / (z—q1) (2 —gm) B

Now let us set

41 = Gm+1
(2.7) G = { for 2<1<m
G = Git+1 for m+1<1<n-1

Then taking Qn,—; = {qi,...,qn—1} and applying the induction hy-
pothesis, we obtain

_]_-__ ( Qm—H - ~2) z = dm)(z - dm+2) : -(Z - ﬁn) d=
2m (:"‘(Il) (z"(Im)

=> <q-q)“ > (-9
la|>1 vCQn_1/B

aCjg |v|l=n—m—|a|



On perturbation of roots of polynomials 67

Now we would like to show that

(2.8) da—-9* Y (-

IQIZI V(_:Qn—l/B
aCp lv|l=n+1—m—|a|
(2.9) Hla=@) Y (g=0" Y. (qa—d"
|le|>1 vCQn_1/8
oaCp jvl=n—m--|al
(2.10)
=2 =" > (-
[v|21 wCp'
¥CA8 |wl=n+1~m~}v|

In order to show the above equality, it is sufficient to prove the
following;
(1) The number of terms of (2.8) and (2.9) is equal to the number
of terms of (2.10).

(2) Every terms of (2.8) and (2.9) is a term of (2.10).
(Here a term means an expression of the form (¢i, —¢j,) - (gi,,
From the definitions of (¢ — §)* and (g — ¢)¥, the number of (2.8)

and (2.9) is
n—1 + n-—1 . n
n—m+1 n—-m) \n-m+1/

Since the right side is the number of terms of (2.10), (1) is proved.

For the second statement (2), it is easy to see that every term of
(2.8) is a term of (2.10) because if a C B and v C Q,_; /S are given in
(2.8), then we can see that v = a and w = v in (2.10). Next we have
to show that every term of (2.9) is a term of (2.10). Here we need to
consider two cases:

q1 ¢ a = {qamqazv"'} g ﬂ? q1 €a= {‘Iﬂlvqaza"‘} g /3
In either case, we can also see that every term of(2.9) is a term of (2.10)
by using (2.7).
For the detail proof of (2), see [13].
As an immediate consequence of this theorem we obtain the follow-

ing results, which can also be obtained classically, eg., Milne-Thomson
[12].
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COROLLARY 2.9. If all §; = 0 in Theorem 2.7, then we have

1 z" L .
— dz = iz gim
2me /1: (z —q1) Z R Om

o (" - qm) i1+i+ - Fim=n+l—mn
i1,52,0im €Z2TU{0}

which is a homogenous polynomial with degree n +1--m with respect

to q1,...,qm, where q1,...,qm lie inside the contour [.
(Here note that from Remark 2.4, ¢i,. .., ¢ need not be necessarily
distinct.)

COROLLARY 2.10. If we want to expand p(z) = (z —b1) (2 —ba)
by (z=b1)- - (2—bn) = cn(2=20)"+Ca-1(2—20)" "'+ -+ci(z—20)+co,
then ,by Theorem 2.7, the coefficients c,, can be expressed as follows;

Cm = Z (zo —biy)- (20 = bi,_,,) for m=0,1,...,n.
bike{bl»-"vbn}
Let us write down the formula for r[3] for the simple case n = 4.

EXAMPLE 2.11. For n = 4, we have the following forms;

rlgi] = (¢i — G1)(gi — G2)(qi — @3)(qi — G1)  for 1 <i <4,

rlgi, qj] =(qi — §@i)(qi — @) (gi — Gm) + (g7 — 4 g5 - Gk ) g5 — Gm)
+(qi — G:)(g; — §;)(gi — Gx)
for1<i#)#k#m<A4,

rgi, q5, qx] =(ai — §i)(qi — Gm) + (¢ — &)(gj = Gm)
+ (g = qe)(qk — gm) + (g — §i)(g5 — 95)
+ (g — Gi)gre — @) + (g5 — 4;)(qr — Gk
for 1 <i#j#k#m<A4,
(1,92, 93, 94] = (g1 — G1) + (g2 — o) + (g3 — §3) + (94 — G4),
where p(2) = (z — q1)(z ~ ¢2)(2 — ¢3)(2 — q1), degr(z) <3.
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3. Construction of the Polynomials P3(p, |¢; — ¢;)

In this section we will define polynomials Ps(p, |¢; — g;|) from the
formula obtained in the previous section and will show that the con-
structed polynomials Pg(p,|g: — ¢;|) are minimal in some sense.

If |¢; — ¢i| < p foralli=1,...,n, then we get the estimate
(e — 9" :Iqoul - qul | IQQ.‘, - ‘jc,-z |- |QG;M - chm I

zlqa"l — e, + 9ej; — q~c,'1 l o lqailvl - chlul + chlvl B qcilvl !
S("]ail — Ge;, | +p):- (I(Ia.'w — g, +p)
Motivated by the above estimate, we shall define the polynomials

Ps(p,|qi — g;]) as follows:

DEFINITION 3.1. Let @, = {q1,...,qn}, then for any subset 8 C
Qn and p > 0, we will define polynomials Ps with respect to variables
p and |g; — ¢;] by the formula

Ps(plai—gil)=D>_ A" > (¢a—a)

e} >1 vCh'
aCB lv|=n+1-m—|a]

where (ga — q)z = ([qail — e, +p) (»lq""m 9, +p) -
Let’s look at the polynomials that correspond to Example 2.11.

EXAMPLE 3.2. If p(z) = (z — q1)(z — g2)(¢ — ¢3)(z — q4), then we
have

Piy(psla — 451) = pllar — @21 + p)(la1 — 3] -+ p)(lgr — g4l + p),

Py 023 (s g — 4;1) =p(la1 — a3| + p)la1 — ga| + p)
+ p(lg2 — a3l + p)(lg2 — q4| + p)
+ 0% (la1 — a3l + p) + P%U1g2 — qal + p),

Pio) 02,0510 10 — @51) =p(lq1 — q4| + p) + p(lg2 — @4| + p)
+ o(lgs — q1] + p) + 3p°,

P{41,q2,qa,44}(pv |qi - le) = 4p.
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From the definition of Pg we can see that
(3.1);

(1) Pq,(pslgi — g;]) = np.

(2) Pgis a universal polynomial of p and |¢; —g;| that depends only
on the subset 3 and is dependent of the perturbing polynomial
r(z).

(3) If the roots ¢y, -+ ,gr of p(z) + r(z) satisfy |g: — ¢i| < p, 1 <
i < n, then [r[8]] < Ps(p.|a: — g,1)

We can also check that the polynomials Ps(p, |¢: - ¢;|) satisfy the
following properties 1) - 5) of Tulovsky ;

(3.2) ;

(1) Ps(p,lqi — q;]) depends only on the variables p and |¢; — g¢;| ,
where ¢; € §', ¢; € 3.

(2) Pa(p,|qi —g¢;]) is a homogencous polynomial of degree n+1—
18], jointly in p and |g; — q,1.

(3) Ps(p,lgi —¢j]) has total degree at most n — |#| with respect to
g — g;1.

(4) Ps(p,|qi — g;]) has degree at most one in each variable |g; — ¢,

(5) If g; € 3, then every term in Pg(p,|¢i — ¢;|) contains at most
one factor of the form |¢g; — ¢;| with ¢; € 8. ( A term means
an expression of the form

pquil — 45 “qi? - qj2| T |Qim - qjm, -

Moreover from the properties 2), 3) of (3.2) and the new formula for
r[A], it is not hard to see that the following properties are satisfied.
(3.3);

for 8 C @, such that |3] = m,

(1) r[8] has (,,;_,,) terms.

(2) For a fixed & < m, in Ps(p,|¢i — ¢;|) the number of terms
containing p* is () and for each |a| = k the number of terms
of the form (ga — )% is (, 1 _m ).

The above properties make it possible to accurately estimate the
constant C(n) in Theorem 1.2 and will also be uscful in obtaining
other results.

Next we will give an example so that

r[3] = Ps(p, i — q;1) -
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EXAMPLE 3.3. Let @n = {q1,...,¢9n} be a decreasing sequence
on the real line R and §; = ¢ —p, ¢ = 1,...,n. Then for 3 =
{91,-.-.qm} € Qn, we can see that (¢ — §)” = pl°l for any o C S
and

|(‘Ia - é)ul = Iqa;l - q~r,'1 !|QG;2 - éc;z I T |qa."p| - q~6,'|y' l
= (|qai1 — ej, | +p)-- (IQQ.M ~ ey, |+ )

where v C 3. We therefore obtain the equality r[8] = Ps(p, lgi — ¢;])
when f = {q1,...,qm} C Qn.

DEFINITION 3.4. Let @, = {q1,...,¢n} and deg 7(z) < n — 1.
Let =, be the collection of all polynomials { Pg} satisfying the following
conditions;
1) If the roots Gy, -+, Gn of p(z) + r(z) satisfy |¢; — ¢i| < p, then
[7[3]] < Ps(p,|qi — q;]) for all non-empty subsets 3 C Q.
i1) Pjg satisfies the 5-properties of (3.2).

Now we will define a relation < on the class =, by: {Ps} < {Pg} if
Ps(p,lgi—q;]) < Pj(p,1gi — ¢;|) for all non-empty subsets 5 C Qn, p >
0 and all |g; — ¢;|. Then we can easily check that (Z,, <) is a partially
ordered set.

REMARK 3.5. For the universal polynomials { Ps} and {P s} defined
by Tulovsky[14,15] in 1984 and 1990 respectively, it turns out that
{Ps} = {Ps}foralln > 3, {P3} > {Ps}foralln > 3and {Pg} > {Ps}

for all n.

THEOREM 3.6. The class {pﬁ} consisting of the polynomials
Pg(p,|q; — q;|) of Definition 3.1 is a minimal element in Z,, for all n.

Proof. Suppose that {P3} < {P3} onZ,, n > 1. Then by definition,
Pi(p,lgi —q;]) < Ps(p, |gi — g;|) for all non-empty subsets 3 C Qy, p >
0 and all @,. From the property (2) of (3.2) and using the fact that
p.{q1 - gn} are arbitrary, we can see that every term in P is a term in
Pg if the relation P3 < Pg is to hold. Now for 8 = {qi,,¢i,,. .-, ¢i,. }» we
would like to choose @, = {q1,...,¢x} sothat |r[3]| = Ps(p,|q:—g;|) as
follows; in Example 3.3, switch ¢; to gi,» 1 <j < m, and set gmyj = g
for j > 1. where ¢.; € 8" = {q,,4¢c,,--.,}. Here note that ¢, > ¢i, >



72 Young Kou Park

iy, 2 ey 2 Ge, 2> - and ¢ =q; —p, 1 = 1,...,n. Hence, for the
Q- = {aq1, - ,¢n} obtained by rearranging {qi, -- .gn} in Example
3.3, we can see that for 8 = {¢:,,¢i,, - ¢i.. }, 7Bl = Ps(p, lg: — ¢;|)
by the condition (1) of (3.2). Since |#[3]] < Pg(p, l¢: — g;]), we obtain
Ps(p,lai — ¢;1) = Pg(p,lgi — ¢j]). That is, {Ps} is a minimal element
in =, forn > 1.

4. Tulovsky’s theorem and estimation or the universal con-
stant C(n)

In this section, we will obtain an explicit relation in terms of poly-
nomials Ps(p, |¢gi — ¢;]) between the perturbations of roots and a per-
turbations of coeflicients by using Newton’s interpolation formula.

We start by introducing some notations. The set of all complex
numbers is denoted by C. By B(z¢, p), we shall always mean the closed
disk of radius p centered at zo. If S is any bounded set in C, its diameter
is given by

dia(S) = sup (|]z —2'}) .
z,2' €S

LEMMA 4.1. (Descarte’s rule of signs [7].) Let p(z) = bp2™ +-- - +
b1z + by be a real polynomial (not the zero polynomial} and let v
denote the number of sign changes in the sequence {bx} of its non-
zero coefficients, and let r denote the number of its real positive roots
(each root counted with its proper multiplicity), then v —r is even and
non-negative.

Now we are going to prove (B).

THEOREM 4.2. Letp(z) =(z—q1)---(z2—¢qn), 7(z) be a polynomial
with degree <n—1andp(z) =p(z)+r(z)=(z—q1) (2 — ¢n).

For a given p > 0, if |¢i — §i| < p for all i, then for non-empty subset
IH g Qns

(4.1) (8] < Ps(p, la: — g5l) -

Conversely if (4.1) holds for all non-empty subsets § C Q,,, then
1) There exists a constant R(n) depending only on n so that the
roots g1, - ,qn of p(z) + r(z) can be indexed in such a way that

(4.2) lgi — ¢i| < dia(Ci) = R(n)p, 1 =1,..., 7,
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where Cjis the connected component of G = G B(qi, R(n)p) containing
1=1

gi, R(n) is the positive solution of the equation;

n—1 n—m-—1
m+1 n—m -1
k" — k™ K=0.

t==0

4n+1

2) 5210 Rn) < = e R(n) & L

9

Proof. Suppose that |¢; — ¢i| < p for all z. From(3.1), for all non-
empty subsets A C Qu, [r3]] < Ps(p, lgi ~ 1.

Now we are going to prove the converse part. Since we have shown
that our polynomials Ps(p,|qi — ¢;j|) also satisfy the 5-properties in
(3.2), we will give roughly the proof, and then estimate the constant
R(n) and the asymptotic estimate of R(n) from the properties (3.3).
Now suppose that (4.1) holds. In order to find ®(n) the proof is based
on Rouche’s Theorem and Newton’s interpolation formula. Let G be
the union of all disks B(¢qi, kp) with boundary I".  Without loss of
generality we assume that z € I with |z — ¢1| = kp and that |g1 — ¢2| <
lg1 —q3| < -+ <|g1 — ¢n|. By Newton’s interpolation formula and the
hypothesis (4.1), we have

Ir(2)]
<rlgl + Irlgr.g2lllz — ol + -+ Irlan, - L qalllz — @l 12 = gn1]
<P y(p g — a5]) + Prgy gy (0 g — @Dz —aqal + - -

+ Py amy (016 — giDlz —qa| -+ |2 — gn |-

From the estimate
l9i—gi| < lo1—aqil+la—q;| < 2lqi—g;12lq1~ 2]+ 2—¢;]) = 2(kp+]z—g;])
for » < j, and by using the properties 1), 4) and 5) in (3.2),

Py gy (p2(kp 4+ 1z — gDz — @] -+ |2 — qozi]

will have degree at most 1 with respect to each variable |z — ¢, | for
every v. So now note that

ST Pl a0 2kp+ 1z = gDz — a1l |z = gomi]
s=1

|2 =] -1z = gnl
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is a decreasing function of every |z —g,| > 0. Hence by replacing |z —q, |
by kp for every v, we obtain the estimate

r(z)l _ Z (a1, 1a.1(Ps 4kp) (kp)* ™!

IP(Z)I (kp)™
Z Pl a1, 4k)ks_1
__ s=1
- kn '

From the property (2) in (3.2), Z Py, ... ,q,}(1,4k)k"'_l has degree
a=1
< n—1. So, by Lemma 4.1 there is only one positive solution k¥ = R(n)

of the equation
Zp{ql y(1,4k)ks ! =

For G = .L_TJ]B(qi, R(n)p), we can see that p(z) = p(z) +r(z) has all it’s
roots in the region G.

Now Rouche’s Theorem gives that in each connected component C;
of G, p(z) and p(z) + r(z) have the same number of roots. Thus we
can index the roots ¢y, -+ ,§, of p(z) + r(z) so that

lgi — ¢i] < dia(Cy) — R(n)p, i1 =1,...,n

We will now estimate the constant R{n) and the asymptotic estimate
of R(n).
Using the properties (3.3) we can see that

,,,,, (Jm+1}(174k)

-1 n-—-—m—1
m+1 n—m-—1 ‘
:kn . kﬂl 1 4k_
Z Z (n—m~t)( t >( +4k)

m=0 t>0
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Hence the positive solution Re(n) can be found from the equation

n—1 n—m-—1
43) k=S k3 (n’_”;it)<"_’:‘l>(1+4k)‘:o.

m=0 t<0

Let us express the left-hand side of (4.3) as follows;

n—1 n—m-1 t
T ST A e O

m=0 t=0 1=0
(4.5) = k" = by k" = by gk — bk~ by .
Then we can see that from (4.4),
1
b1 = 5(4’““l —3n —4)

1
bn-z = —{(2n - 4)4™* 4 3n? 4 13n + 16}.
9}

By using the Quadratic formula from the equation from the equation
k" — b, 1k™ 1 — b, k"% = 0, we have 32—%—"—1—9 < R(n). It turns
out that b,_3 < n%4"=? and b < nitign—J for j > 4.

So we get

()"

9
47+l — 4yn-1 T S 47+l — ¢4
o () () () )
for n > 1. Therefore, we obtain
47+t 10 4nt 4
— < R(n) < —

9

REMARK 4.3. If we don’t know the magnitde of the perturbation
p that r(z) introduces into roots ¢i,...,qn of (4.1). i we choose the
smallest p so that all the inequalities (4.1) are satisfied, then we know
that from (4.2)

lgi — Gi| < dia(Ci)—R(n)p, i=1,...,n,

9

where C; is the connected component containing ¢; of
G = UL, B(gi,R(n)p). And at least one root is perturbed by the
amount p, l.e. |¢gi — ¢i| > p for some i.
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