REDUCTION FACTOR OF MULTIGRID ITERATIONS FOR ELLIPTIC PROBLEMS

Do Y. Kwak

1. Introduction

Multigrid method has been used widely to solve elliptic problems because of its applicability to many class of problems and fast convergence ([1],[3], [9], [10], [11], [12]). The estimate of convergence rate of multigrid is one of the main objectives of the multigrid analysis([1], [2], [5], [6], [7], [8]). In many problems, the convergence rate depends on the regularity of the solution([5], [6], [8]). In this paper, we present an improved estimate of reduction factor of multigrid iteration based on the proof in[6].

2. Elliptic problems in R²

Let Ω be a polygonal domain in \mathbb{R}^2 and let

$$-Lu = f \text{ in } \Omega$$
(2.1)
$$u = 0 \text{ on } \partial\Omega,$$

where L is a uniformly elliptic operator and $f \in L^2(\Omega)$. We further assume the solution u satisfies the elliptic regularity: $u \in H_0^{1+\alpha}(\Omega)$. Let $S_h(\Omega)$ be a finite dimensional subspace of $H_0^1(\Omega)$, say, the space of continuous, piecewise linear functions on some triangulation of Ω . We use standard finite element method to solve (2.1), i.e,

$$(2.2) A(u,\phi) = (f,\phi), \quad \forall \phi \in S_h(\Omega).$$

Received June 28, 1993.

Key words: Multigrid method, elliptic problems, reduction factor.

The author was partially supported by the Applied Mathematics Research Center at Korea Advanced Institute of Science and Technology.

¹⁹⁹¹ AMS subject classification: Primary 65N30; secondary 65F10.

8 Do Y. Kwak

Let $M_1 \subset \cdots \subset M_J = S_h(\Omega)$ be a nested sequence of subspaces of $S_h(\Omega)$. Let $(\cdot, \cdot)_k$ be the discrete L^2 inner product on M_k . To define multigrid algorithm we need some operators. For $k = 1, \dots, J$ define $A_k : M_k \to M_k, P_k : M_J \to M_k, P_{k-1}^0 : M_k \to M_{k-1}$ via

$$(A_k u, \phi)_k = A(u, \phi), \quad \forall \phi \in M_k,$$

$$(A_{k-1} P_{k-1} u, \phi)_{k-1} = A(u, \phi), \quad \forall \phi \in M_{k-1},$$

$$(P_{k-1}^0 u, \phi)_{k-1} = (u, \phi)_k, \quad \forall \phi \in M_{k-1}.$$

and define the multigrid algorithm as usual:

Multigrid Algorithm Set $S_1 = A_1^{-1}$. Assume S_{k-1} has been defined and define $S_k(g)$ as follows:

- (1) Set $x^0 = 0$ and $c^0 = 0$.
- (2) Define x^l for $l = 1, \dots, m$ by

(2.3)
$$x^{l} = x^{l-1} + R_k(g - A_k x^{l-1}).$$

where R_k is any symmetric smoother.

(3) Define $x^{m+1} = x^m + c^p$ where $c^i, i = 1, \dots, p$ is given as

(2.4)
$$c^{i} = c^{i-1} + S_{k-1}[P_{k-1}^{0}(g - A_{k}x^{m}) - A_{k-1}c^{i-1}].$$

(4) Define x^{l} for $l = m + 2, \dots, 2m + 1$ by

(2.5)
$$x^{l} = x^{l-1} + R_{k}(g - A_{k}x^{l-1}).$$

(5) Set $S_k(g) = x^{2m+1}$.

One can also define an algoritm without (2.5). Set $N_i = A_1^{-1}$. Assume N_{k-1} has been defined and define $N_k(g)$ as follows:

Nonsymmetric Algorithm

- (1) Set $x^0 = 0$ and $c^0 = 0$.
- (2) Define x^l for $l = 1, \dots, m$ by

(2.6)
$$x^{l} = x^{l-1} + R_{k}(g - A_{k}x^{l-1}).$$

(3) Define c^p for, $i = 1, \dots, p$ given as

(2.7)
$$c^{i} = c^{i-1} + N_{k-1} [P_{k-1}^{0}(g - A_{k}x^{m}) - A_{k-1}c^{i-1}].$$

(4) Set $N_k(g) = x^m + c^p$.

Let
$$c$$
 satisfy $P_{k-1}^0(g - A_k x^m) - A_{k-1}c = 0$. Then
$$c^i - c = c^{i-1} - c - N_{k-1}A_{k-1}(c^{i-1} - c)$$

$$= (I - N_{k-1}A_{k-1})(c^{i-1} - c)$$

$$c^{p} - c = (I - N_{k-1}A_{k-1})^{p}(c^{i-1} - c)$$

$$c^{p} - c = (I - N_{k-1}A_{k-1})^{p}(c^{i-1} - c)$$

therefore

$$c^{p} = [(I - N_{k-1}A_{k-1})^{p}]A_{k-1}^{-1}P_{k-1}^{0}A_{k}(x - x^{m}).$$

Also

$$x - x^{m} = x - x^{m-1} - R_{k}A_{k}(x - x^{m-1})$$
$$= (I - R_{k}A_{k})(x - x^{m-1})$$
$$= K_{k}^{m}x.$$

Thus, from $P_{k-1}^0 A_k = A_{k-1} P_{k-1}$, and Ax = a.

$$(I - N_k A_k)x = x - N_k g = x - x^m - c^p$$

$$= K_k^m x - [I - (I - N_{k-1} A_{k-1})^p] A_{k-1}^{-1} P_{k-1}^0 A_k (x - x^m)$$

$$= (I - [I - (I - N_{k-1} A_{k-1})^p P_{k-1}]) P_{k-1} K_k^m x$$

$$= [I - P_{k-1} + (I - N_{k-1} A_{k-1})^p P_{k-1}] K_k^m x.$$

For the symmetric case, we have similarly,

$$(2.8) I - S_k A_k = K_k^m [(I - P_{k-1}) + (I - S_{k-1} A_{k-1})^p P_{k-1}] K_k^m.$$

Thus

(2.9)
$$A((I - S_k A_k)u, v) = A((I - P_{k-1})K_k^m u, K_k^m v) + (A(I - S_{k-1} A_{k-1})^p P_{k-1} K_k^m u, K_k^m v).$$

We also find the relation between symmetric multigrid algorithm and nonsymmetric multigrid algorithm:

$$A((I - S_k A_k)u, u) = A((I - N_k A_k)u, (I - N_k A_k)u)).$$

3. Estimates of convergence factor

We shall show that for symmetric algoritm

$$(3.1) A((I - S_k A_k)u, u) \le \delta_k A(u, u)$$

and

$$(3.2) A((I-N_kA_k)u,(I-N_kA_k)u) \le \delta_k A(u,u)$$

for nonsymmetric algorithm. For the proof we need two assumptions. First of all, the following regularity and approximation property:

$$(3.3) \quad A((I - P_{k-1})u, u) \le C_{\alpha}^{2} \left(\frac{\|A_{k}u\|_{k}^{2}}{\lambda_{k}}\right)^{\alpha} A(u, u)^{1-\alpha}, \quad u \in M_{k},$$

where λ_k is the largest eigenvalue of A_k . This follows from the regularity of the solution of the underlying differential equation and the approximation property of the subspaces M_k .

Next, weed have from the smoothing property of R_k ,

$$\frac{\|u\|_k^2}{\lambda_k} \le C_R(R_k u, u)_k, \quad u \in M_k.$$

Now the following result is from[6].

THEOREM A. Assume (3.3) and (3.4). Then $S_k(\cdot)$ defined with p=1 satisfies (3.1) with

$$\varepsilon_k = \frac{\delta_k = 1 - \varepsilon_k}{m^{\alpha}}$$

$$\varepsilon_k = \frac{m^{\alpha}}{m^{\alpha} + M_{\alpha}(j+k)^{(1-\alpha)/\alpha}}$$

where $\tilde{M}_{\alpha} = \left(\frac{1+j}{j}\right)^{s} \frac{C_{R}(\alpha C_{\alpha}^{2})^{1/\alpha}}{2}$ and

$$s = \begin{cases} \frac{1-\alpha}{\alpha}, & \alpha \ge \frac{1}{2} \\ \left(\frac{1-\alpha}{\alpha}\right)^2, & \alpha < \frac{1}{2}. \end{cases}$$

Set

$$M_{\alpha} = \left(\frac{1 + \tilde{M}_{\alpha}}{\tilde{M}_{\alpha}}\right)^{\frac{1 - \alpha}{\alpha}}.$$

In this proof, however, the convergence factor δ_k depends heavily on α and $\delta_k \to 1$ very fast as $\alpha \to 0$. In this paper, we try to improve above result by a more careful analysis. We have under same assumptions,

THEOREM 1. $S_J(\cdot)$ defined with p=1 satisfies (3.1) with

$$\delta_k = 1 - \varepsilon_k$$

(3.5)
$$\varepsilon_{k} = \frac{m^{\alpha}}{m^{\alpha} + M_{\alpha}(i+k)^{(1-\alpha)}}$$

where

(3.6)
$$M_{\alpha} = S_{\alpha}^{1-\alpha}(C_{\alpha}^{2}) \left(\alpha \frac{C_{R}}{2}\right)^{\alpha}$$

and S_{α} , D_{α} are quantities satisfying

$$(3.7) S_{\alpha} = \frac{1}{D_{\alpha}} \left(\frac{A-1}{A} \right)^{-\alpha}.$$

In this result we have several choices for S_{α} . We shall see some of the examples later.

Proof. From (2.9) and the induction hypothesis,

$$A((I - P_{k-1})u, u)$$

$$\leq A((I - P_{k-1})K_k^m u, K_k^m u) + \delta_{k-1}A(P_{k-1}K_k^m u, K_k^m u).$$

$$= (1 - \delta_{k-1})A((I - P_{k-1})K_k^m u, K_k^m u) + \delta_{k-1}A(P_{k-1}K_k^m u, K_k^m u).$$

As in the proof of Theorem A in [6],

$$\leq [(1 - \delta_{k-1})C_{\alpha}^{2}(1 - \alpha)\gamma_{k}^{-\alpha/(1-\alpha)} + \delta_{k-1}]A(K_{k}^{2m}u, u) + (1 - \delta_{k-1})C_{\alpha}^{2}C_{R}\frac{\alpha}{2m}\gamma_{k}A((I - K_{k}^{2m})u, u).$$

Then (3.1) will follow if we choose γ_k so that

$$(3.9) (1 - \delta_{k-1}) C_{\alpha}^{2} (1 - \alpha) \gamma_{k}^{-\alpha/(1-\alpha)} + \delta_{k-1} \le \delta_{k}$$

(3.10)
$$\operatorname{and}(1 - \delta_{k-1}) C_{\alpha}^{2} C_{R} \frac{\alpha}{2m} \gamma_{k} \leq \delta_{k}.$$

Set γ_k so that

(3.11)
$$(1 - \delta_{k-1}) C_{\alpha}^2 C_R \frac{\alpha}{2m} \gamma_k = \delta_{k-1}.$$

12 Do Y. Kwak

Since $\delta_k \geq \delta_{k-1}$, (3.10) follows as soon as (3.11) holds. We need to check (3.9) which is equivalent to

$$(3.12) (1 - \delta_{k-1}) C_{\alpha}^{2} (1 - \alpha) \gamma_{k}^{-\alpha/(1-\alpha)} \leq \delta_{k} - \delta_{k-1}.$$

Let $D(k) = m^{\alpha} + M_{\alpha}(j+k)^{1-\alpha}$ and let

$$(3.13) 1 - \delta_k = \varepsilon_k = \frac{m^{\alpha}}{m^{\alpha} + M_{\alpha}(i+k)^{1-\alpha}} = \frac{m^{\alpha}}{D(k)}, \alpha < 1.$$

Then

(3.14)

$$\delta_k - \delta_{k-1} = \varepsilon_{k-1} - \varepsilon_k = \frac{M_\alpha m^\alpha}{D(k)D(k-1)} [(j+k)^{1-\alpha} - (j+k-1)^{1-\alpha}].$$

With A = j + k, we see that

$$[A^{1-\alpha} - (A-1)^{1-\alpha}] = A^{-\alpha} \left[1 - \left(1 - \frac{1}{A}\right)^{1-\alpha} \right]$$

$$\geq (1-\alpha)A^{-\alpha}.$$

Since

(3.16)
$$\varepsilon_{k-1} - \varepsilon_k = \frac{(1-\alpha)M_{\alpha}m^{\alpha}}{D(k)D(k-1)}(j+k)^{-\alpha},$$

The left side of (3.12) is

(3.17)

$$(1-\delta_{k-1})^{\frac{1}{1-\alpha}}(C_{\alpha}^2)^{\frac{1}{1-\alpha}}(1-\alpha)\left(\frac{\alpha C_R}{2m}\right)^{\frac{\alpha}{1-\alpha}}\cdot \left[\frac{D(k-1)}{M_{\alpha}(j+k-1)^{1-\alpha}}\right]^{\frac{\alpha}{1-\alpha}}$$

We want to show $(3.17) \le (3.16)$ which means

(3.18)

$$\frac{1}{D(k-1)} (C_{\alpha}^2)^{\frac{1}{1-\alpha}} \left(\frac{\alpha C_R}{2M_{\alpha}} \right)^{\frac{\alpha}{1-\alpha}} (j+k-1)^{-\alpha} \le \frac{M_{\alpha} m^{\alpha} (j+k)^{-\alpha}}{D(k)D(k-1)}$$

$$(3.19) (C_{\alpha}^{2})^{\frac{1}{1-\alpha}} \left(\frac{\alpha C_{R}}{2M_{\alpha}}\right)^{\frac{\alpha}{1-\alpha}} (j+k-1)^{-\alpha} \leq \frac{M_{\alpha}m^{\alpha}(j+k)^{-\alpha}}{D(k)}$$

Let
$$\widetilde{M}_{\alpha}^{\frac{\alpha}{1-\alpha}} = (C_{\alpha}^2)^{\frac{1}{1-\alpha}} \left(\frac{\alpha C_R}{2}\right)^{\frac{\alpha}{1-\alpha}}$$
. Then it suffices to show

$$(3.20) \qquad \widetilde{M}_{\alpha}^{\frac{\alpha}{1-\alpha}} \leq M_{\alpha}^{\frac{1}{1-\alpha}} m^{\alpha} \left(\frac{A-1}{A}\right)^{\alpha} / D(k),$$

$$\widetilde{M}_{\alpha}^{\frac{\alpha}{1-\alpha}} [m^{\alpha} + M_{\alpha} (j+k-1)^{1-\alpha}] \leq M_{\alpha}^{\frac{1}{1-\alpha}} m^{\alpha} \left(\frac{A-1}{A}\right)^{\alpha}$$

$$1 + \widetilde{M}_{\alpha}^{\frac{\alpha}{1-\alpha}} m^{\alpha} M_{\alpha}^{\frac{1}{1-\alpha}} (A-1)^{\alpha} R_{\alpha} m^{\alpha}$$

Let
$$\widetilde{M}_{\alpha}^{\frac{\alpha}{1-\alpha}} = M_{\alpha}^{\frac{1}{1-\alpha}} \left(\frac{A-1}{A}\right)^{\alpha} D_{\alpha}$$
. Then
$$D_{\alpha}[m^{\alpha} + M_{\alpha}(j+k-1)^{1-\alpha}] \leq m^{\alpha}$$

And hence

(3.21)
$$D_{\alpha}M_{\alpha}(j+k-1)^{1-\alpha} \le m^{\alpha} - D_{\alpha}m^{\alpha} = (1-D_{\alpha})m^{\alpha}$$
Set

$$M_{\alpha}^{\frac{1}{1-\alpha}} = S_{\alpha}(C_{\alpha}^2)^{\frac{1}{1-\alpha}} \left(\frac{\alpha C_R}{2}\right)^{\frac{\alpha}{1-\alpha}}.$$

Then from

$$\widetilde{M}_{\alpha}^{\frac{\alpha}{1-\alpha}} = M_{\alpha}^{\frac{1}{1-\alpha}} \left(\frac{A-1}{A}\right)^{c} D_{\alpha}$$

we have $D_{\alpha} = \frac{1}{S_{\alpha}} \left(\frac{A-1}{A} \right)^{-\alpha}$. Hence (3.21) is equivalent to

$$(3.22) \frac{1}{S_{\alpha}} \left(\frac{A-1}{A}\right)^{-\alpha} S_{\alpha}^{1-\alpha} C_{\alpha}^{2} \left(\frac{\alpha C_{R}}{2}\right)^{\alpha} (A-1)^{1-\alpha} \leq (1-D_{\alpha}) m^{\alpha}$$

It is equivalent to

$$(3.23) S_{\alpha}^{-\alpha} \left(\frac{A-1}{A}\right)^{-\alpha} C_{\alpha}^{2} \left(\frac{\alpha C_{R}}{2}\right)^{\alpha} (A-1)^{1-\alpha} \leq (1-D_{\alpha})m^{\alpha}$$

which holds if S_{α} is sufficiently large.

Now we give examples of S_{α} and D_{α} for which (3.23) holds. Let S_{α} be any number such that $S_{\alpha}^{\alpha} \to S_0$ as $\alpha \to 0$, where S_0 is some large number greater than zero. Then $D_{\alpha} \to S_0^{-1}$ and since $C_{\alpha} \to C_0 = 1$, (3.23) becomes

$$\frac{(A-1)}{S_0} \le (1-S_0^{-1}).$$

Which holds if $S_0 \geq A$.

EXAMPLE 1. Let $S_{\alpha}^{\alpha} = (1 + 2\alpha \ln A)^{1/\alpha}$. Then $S_{\alpha}^{\alpha} \to A^2$ and (3.23) holds for α sufficiently small.

Example 2. Let

$$S_{\alpha}^{\alpha} = \left(\frac{A-1}{A}\right)^{-\alpha} C_{\alpha}^{2} C \left(\frac{\alpha C_{R}}{2}\right)^{\alpha} (A-1)^{1-\alpha}$$

for some large constant C.

References

- R. Bank and T.F.Dupont, An optimal order process for solving elliptic finite element equations, Math. Comp 36 (1981), 35-51.
- D. Braess and W. Hackbusch, A new convergence proof for the multigrid method including the V-cycle, SIAM J. Numer. Anal. 20 (1983), 967-975.
- A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp 31 (1977), 333-390.
- 4. J. H. Bramble, Multigrid Methods, Cornell Mathematics Department Lecture Notes, 1992.
- J. H. Bramble and J. E. Pasciak, The analysis of smoothers for multigrid algorithms, Math. Comp. 58 (1992), 467-488.
- 6. J. H. Bramble and J. E. Pasciak, New estimates for multigrid algorithms including the V-cycle, Math. Comp., to appear.
- J. H. Bramble and J. E. Pasciak, Uniform convergence estimates for multigrid V-cycle algorithms with less than full elliptic regularity, Brookhaven Nat. Lab. #BNL-47892 (1992).
- J. H. Bramble, J. E. Pasciak, J. Wang and J. Xu, Convergence estimates for multigrid algorithms without regularity assumptions, Math. Comp 57 (1991), 23-45.
- 9. R. P. Fedorenko, The speed of convergence of one iterative process, USSR Comput. Maht. and Math. Phys. (1961), 1092-1096.
- W. Hackbusch, Multi-Grid methods and applications, Springer-Verlag, New York, 1985.
- J. Mandel, Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step, Proc. Copper Mtn. Conf. Multigrid Methods 19; Appl. Math. Comput. (1986), 201-216.
- J. Mandel, S. McCormick and R. Bank, Variational multigrid theory, Multigrid Methods, Ed. S. McCormick, SIAM, Philadelphia, Penn., 131-178.
- R. A. Nicolaides, On the \(\ell^2\) convergence of an algorithm for solving finite element equations, Maht. Comp. 31 (1977), 892-906.

Department of Mathematics Korea Advanced Institute of Science and Technology Taejon, Korea 305-701

E-Mail: dykwak@math.kaist.ac.kr