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REDUCTION FACTOR OF MULTIGRID
ITERATIONS FOR ELLIPTIC PROBLEMS

Do Y. Kwak

1. Introduction

Multigrid method has been used widely to solve elliptic problems
because of its applicability to many class of problems and fast conver-
gence ([1],(3], [9], {10], [11], [12]). The estimate of convergence rate of
multigrid is one of the main objectives of the multigrid analysis([1], [2].
[5], [6], [7], [8]). In many problems, the convergence rate depends on
the regularity of the solution([5], [6], [8]). In tlis paper, we present an
improved estimate of reduction factor of mult:grid iteration based on
the proof in[6].

2. Elliptic problems in R?

Let © ba a polygonal domain in R? and let

—~Lu= fin
(2.1) ©w =0 on 02,

where L is a uniformly elliptic operator and f € L?(2). We further
assume the solution u satisfies the elliptic regularity: v € HiT%(Q).
Let S3(f2) be a finite dimensional subspace of Hj (), say, the space of
continuous, piecewise linear functions on some triangulation of Q. We
use standard finite element method to solve (2.1), i.e,

(2.2) Alu,¢) = (f, ), V¢ € SniQ).
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Let M; C --- C M; = Si(€2) be a nested sequence of subspaces of
Sn(§2). Let (-,-)x be the discrete L? inner product on My. To define
multigrid algorithm we need some operators. For k == 1,---,J define

A My — My, Py : M; — Mk,P,?_1 M — M1 via
(Aru, o) = A(u, ¢), Yo € M.
(A1 Prou, @)1 = Alu, ¢), Vo € My_q,
(Pe_iw, d)ky = (u.d)k, Vo € My_y.
and define the multigrid algorithm as usual:
Multigrid Algorithm Set S; = A[l. Assume Si_; has been de-
fined and define Si(g) as follows:

(1) Set 2% =0 and ¢ = 0.
(2) Define &' for I =1,--- ,m by

(2.3) el =27 4 Ru(g — Ara'h).
where Ry is any symmetric smoother.
(3) Define z™t! = 2™ + ¢ where ¢',7 = 1,--- ,p is given as
(2.4) = Sk.-l[P,?_l(g — Araz™) — Ak-wlci_l].

(4) Define ' for l =m +2,--- ,2m +1 by
(2.5) eb=2""1 4 Ri(g — Akxlﬁl),
(5) Set Sk{g) = a?™*!,

One can also define an algoritm without (2.5). Set N; = A7, Assume
Ni_1 has been defined and define N¢(g) as follows:

Nonsymmetric Algorithm

(1) Set z° =0 and * = 0.
(2) Define #! for I =1,--. ,m by

(2.6) =y Ry - A,
(3) Define ¢? for, 7 = 1,--- ,p given as

(2.7) ¢ = F N [P (g — Ara™) — Ar_1c 7]
(4) Set Ni(g) = a™ + .
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Let ¢ satisfy PP _ (g — Akz™) — Ax_1¢ = 0. Then
d—c=c"toc— Nio1Ap_1(ct7 1 —-¢)
= (I = N1 Ax)(c 7 =)
F —c=(I—NeoyAp_P(c™! =)

therefore

¢ = (I ~ Neor Ax—1 PJAL PUoy Ar(z — 2™)
Also
z—z™ =2 — 2™ - ReAg(z - 2™ )
= (I — RkAk)(l‘ — :Em_l)
=K.
Thus, from P,?_]Ak = Ap_1Pr-1,and Az = g,
(I = NiAg)z =z~ Npg=2z —z™ = F
=K'z — [I — (I = Ny Ap PIADE PY_ Az — 2™)
=T —[I—(I—=Npey Ax1)PPiq]) P K2
:[I — P + (I — ]Vk_lAk_l)pPk_l]Ix’;Tx.

For the symmetric case, we have similarly,
(2.8) I-— SkAk = I&’,Zn[(f — Pk-—l) + (I — Sk-lAk_l)pPk_J]I{
Thus

A((I = SeAp)u,v) = A(( — Pro1) K u, K{'v)
(2.9) +(A(I - Sk..lAk,_])pPk_l.[Xk u, I\k U).

We also find the relation between symmetric multigrid algorithm and
nonsymmetric multigrid algorithm:

A((I — SkAr)u,u) = A(( — NeAg)u, (I — NpAp)u)).
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3. Estimates of convergence factor

We shall show that for symmetric algoritm

(3.1) A((I — Sk Ap)u,u) < 6pA(u,u)
and
(3.2) A((I — N Apu, (I — NpAg)u) < 6k A(u, u)

for nonsymmetric algorithm. For the proof we need two assumptions.
First of all, the following regularity and approximation property:

2
(3.3)  A(( = Pe_y)u,u) < C2 (/\—
k
where Ay 1s the largest eigenvalue of A4;. This follows from the reg-
ularity of the solution of the underlying differential equation and the
approximation property of the subspaces M.
Next, weed have from the smoothing property of Ry,

) A(u,u)t ™%, u € My,

(3.4) H H" < Cr(Riu,w)p, u € M.

Now the following result is from{6].

THEOREM A. Assume (3.3) and (3.4). Then Si(-) defined with
p = 1 satisfies (3.1) with
br=1-¢1

nl(l

Y MG + k)(-o)a

~ AN 2\ 1/«
Crn(aC
where M, = (%l) ”—((’—Q—L)——— and
%’ a >
5 = .
N2
(IT") , a <

M, = | LM
M,

In this proof, however, the convergence factor é; depends heavily on
a and é; — 1 very fast as & — 0. In this paper, we try to improve above
result by a more carcful analysis. We have under same assumptions,

£k =

(] E T

Set
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THEOREM 1. S;(-) defined with p = 1 satisfies (3.1) with

b =1 — &
m(]

3.5 =
( O) Ek m"—{-]\f(,(]—}—k)(]"’)
where

C AN §
(3.6) Mo =S\ “(CQ)< —=
and So, D, are quantities satisfying
. 1 (A-1\""
3.7 o= = | —— .
(37) 5= 5. (%)

In this result we have several choices for S,. We shall see some of
the examples later.

Proof. From (2.9) and the induction hypothesis,
(3.8)
A((] — Pr_1)u,u)

<A = P ) KM, Ktw) + 8k 1 A( Py Ktu, KM u).
= (1= br-1)A((I — Pro1) K w, K7 u) + 6o A(Pr1 K u, KM w).
As in the proof of Theorem A in [6],
<1 = 86— )C2(1 — @)y ®/ 7% 4 i JACK ™ u, )
+ (1= 6em)CeCrg— AU = KE™uv).

Then (3.1) will follow if we choose v so that

(3.9) (1= 651)C2(1 = )y, U™ 464y < 6
(3.10) and(1 = 41)CZCh5 7k < 6.

Set & so that

(311) (1= 65-1)C20RGT 7 = bicn.
Zm
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Since 8x > ék-1, (3.10) follows as soon as (3.11) holds. We need to
check (3.9) which is equivalent to

(3.12) (1= 6xk-1)CE1 — a)y; /7 < b — bi 1.

Let D(k) = m® + M,(j + k)~ and let

(3.13) 11— 6k =ck= T - <1
me + M.(j+ k)= D(k)

Then

(3.14)

Mom®

£k = D(T)Dm[(j +ER) TG+ E-1) 0

Ok — Ok—1 = Ek—1 —

With A = 5 + k., we see that

(3.15) > (1 —a)A™.
Since

(1 —a)Msm®

(316) Ek—1 — &k = W

(J+ k)%,

The left side of (3.12) is
(3.17)

(1= 85) == (C2) 75 (1~ a) (

aC'R) = D(i: - 1) e
2m My(G+k—=1)t-@

We want to show (3.17)< (3.16) which means

(3.18)

1 o1 (aCp\T% e Mam®( k)
[ — -« — P . — <

or
a

2y aCp\'"™" . e Mom®(y+ k)T
(3.19) (Ca) ( ) +k-1)""< D(k)




Reduction factor of multigrid Iterations for elliptic problems 13

Let M;_f"; = (Cg)l_‘a ("—gﬂ)%‘.
Then it suffices to show

—— - —1\¢
(3.20) MIF < MIeme (%) /D(k),

A

—— . - —1
AI(:—Q{ [ +A_[ (]-}—]\—1)1 a]<Ma ““m (—'—4——>

Let Mai* = ,M(l—"l? (471" D,,. Then
Do[m® + M, (5 + k- 1)17% <m®
And hence
(3.21) DoMo(j +k—1)'"" <m®™ = Damn® = (1 — Dy )m®
Set,

aCr ) T-a
5 )

r4

MI® = 5,(C2)y== (

—— 1 /A1 ¢
Mo =Mz [ 1) D,
(*+)

s

Then from

we have D, = ql (-"——-)_O‘. Hence (3.21) is equivalent to

(3.22) i(ﬁiy Sl-ec? (“CR) (4--1)1"% < (1= Dg)m®

Sa A

It is equivalent to

(3.23) S-° <—4—;—1> c? (“f’*) (A=1)'" < (1= Dg)m®
which holds if S, is sufficiently large.

Now we give examples of S, and D, for which (3.23) holds. Let S,
be any number such that S¢ — Sy as @ — 0, where Sy is some large
number greater than zero. Then D, — Sﬂ_l and since Cy — Cy = 1,
{3.23) becomes

p

0

Which holds if Sp > A.
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EXAMPLE 1. Let 5¢ = (1+2aln A)"/*. Then S¢ — A? and (3.23)

holds for « sufficiently small.

EXAMPLE 2. Let

o (A-INTT L [aCg\" 1-a
- (452) "ee (262) 4

for some large constant C.
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