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AN IMPROVED BONFERRONI-TYPE INEQUALITY

MIN-YOUNG LEE

1. Introduction

Let A;,A2,--- ,A, be a sequence of events on a given probability
space and let m,, be the number of those A’s which occur. Put 5;,, =1

and
Stm =9 P(4i N4 N--NAL), (1<k)

where the summation is over all subscripts satisfying 1 < ¢ < i3 <
<k < n.
Kounias (1968) has proved that

(1) PUM A) < i P(A;) — max; Y P(A;N A;)

i=1 i)

which improves on the simple Bonferroni upper bound of 3 P(A4,).
Margolin and Maurer (1976) generalizes this result by using more than
just 3 P(A;) from the classical estimates. Hunter (1976), whose result
is reobtained in the paper of Worsley (1982), presents an improved
upper bound which is constructed by edges on a graph.

When one compares (1) with the lower bound

Sl,n - 52,11 S P(U?_—_lAz)

we see that the real meaning of (1) is that if not too many terms of
intersections of pairs are subtracted from S ,,, it still remains an upper
bound, but when all intersections of pairs are subtracted, we get a lower
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bound. The question thus arises that if we subtract more that IKKounias
does but much less than S ,, how many intersections of three events
will compensate for this in order to get an upper bound again. The
classical upper bound of degree three is

P(U?=1Ai) < Sl‘n, - S‘Z,n + 53,11

and my idea is to reduce the number of terms both in 5S>, and S; ,
without violating its being an upper bound. For a related idea, see the
graph-dependent models of Renyi (1961) and Galambos (1966). It is
well demonstrated in the literature that the classical Bonferroni bounds
are sometimes of little value exactly becauce of the large number of
terms in Sk, 2 < k. For such cases, bounds with limited number of
terms can be of value. In this direction, I prove the inequality of the
theorem that follows.

2. An improved bound

The upper bound is improved by the following result.

THEOREM 1. For integers3 <nand1<i:<n—-2

n—2
(2) P(ma 2 1)< Sin— > P(ANA;)+ > P(AiNAipiNAi2).
i<j<i+2 i=1

Proof. We use the method of indicators. That is, let I(4;, N A4, N
--NA;,)belif 4, NA;, N---NA4;, occurs or 0, otherwise. Then

I(A,‘l ﬂA,’2 N---NA; )= I(A,‘I)I(A,'?)~-~ I{A.,'k)

and
E[I{Ai; NAiL, N NA )] =PlA;, NA, N - N AL

Futhermore, the indicator variable I(m, > 1)is 1if n,, > 1 and 0 if
m, = 0. Note also that > | I(4;) = m, and Sy, = E[m,].
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We thus have to prove

n-—2
(3) ma— Y IAN(A4)+ Y IANI(A + 1I(A +2) > 1
i<j<it2 i=1

if m, > 1 and the left hand side of (3) is greater than zero or equal to
zero if m, = 0. The latter case is evident, having zero on both sides.
Also, if m, = 1 both sides of (3) equal 1. Hence, for the sequel we may
assume My > 2.

Next, we place the events 4, A2, -, 4, at every sample point into
blocks which consist of events of the kind 4;N A4 NN A4k, which
is a full block if neither 4;_; nor A4 41 occurs. Assume that in this
way, at a given sample point, we have t blocks. We distinguish three
cases.

(i) First case. For all j,k; > 2 ; that is, every full block has
at least two events. One can express both Zi<;5i+2 I{4;)I(4;) and

Zn_2 I(A)I(Ai41)I(Ait2) by means of blocks; that is, if the t blocks

=1
have length k;,: < j < t, then the above sums equal

0
t 1 !
(4) 2[2(kj -2)+ 1]+ 2 and Z( b, —2), respectively
=1 . =1
t—1

0

1
where 2 denotes the number 23:1 L}, LY being 1if d = 2 and

t—1

0if d > 2 and d is the difference between last number of j-th block and
first number of next one.
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Since E;‘=1 k; = m,, by (4), the left hand side of (3) becomes

>1

0
1
t — 2
t—1

Hence, we get (3).

(ii) Second case. There is only one j with k; = 1 ; that is, only in
the r-th block, say, only one event occurs, and for j #r, k; > 2. We
now have

> I(ANI(4))

i<j<i+2
0
= ! 0 0
5 = ki —2)+1 2
® =xew-asus| 2 (1) ()
r—2
0
¢ 1
+ 3 2k -2+ 1]+ 2
J=r+1
t—r—2
0
r—1 t 1
=Y 2k -2 +1]+ Y 2k -2 +1)+ | 2
=1 j=rt1 f
t—1
and
n—2 r—1 t
6) > IHAN(Ag)(Aig2) = (ki =2)+ 3 (kj—2)
=1 j=1 j=r+1l
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Since Z;;ll ki +1+ Z;:H_] k; = my, in view of (5) and (6), the left
hand side of (3) is

N = O

t—1
Once again, (3) obtains.

(ii1) Third case. There exist more than one j with k; = 1; that
is, there are several blocks which have only one event. In the same
manner as in (ii), except that several terms contribute (?) we get (3).
This completes the proof.

Taking average which over s = 1,2, --- ,n of (2), We get the following
Bonferroni-type inequality.

THEOREM 2. Let n be integers with n > 3. Then

Dy —  —
(“” 3)52,11 -+ uSS,H

n n

2 3
This inequality is known that it is the best possible upj)@r bound in
terms of S1,,, Sa2,,, and Ss,, ( see kwerel (1975) )

Also, its simple proof appers in Galambos and Xu (1990) in conse-
quence of the iteration method.

Pimp, >1)< 51, —

3. Numerical Examples

EXAMPLE 1. Let X; be the time to failure of the j-th component
of a piece of equipment. Assume that each X is a unit exponential
variate; that is, for each j,

PX;<z)=1-¢"", (x> 0).

Consider a group of five components, X1, X3, X3, X4, X5. We assume
we just know the following information.
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(a) X; and X4 are dependent; that is, X; and X are dependent,
so are X, and X3, X3 and X4 and, finally, X; and X;.

(b) Xit1 is dependent on both X; and Xij»; that is, X7 is depen-
dent on both X; and X3; X3 is dependent on both X, and Xy; Xy is
dependent on both X3 and X5s.

No other information is available on the interdependence of the com-
ponents. We also specify the bivariate and the trivariate distributions
of the X ;. For simplicity, let the bivariate and the trivariate distribu-
tions for all dependent components specified in (a) and (b) be the same.

Let
PXi<z,Xo<y)=PXy <2, Xy <y)=P(X3 <2,Xy <y)
=P(Xy<r,Xs<y)=PX| <2,X3 <vy)
=P(Xo<2, Xy <y)=P(X3 <a,Xs <vy)

PUX: < 0Xa <0, Xa < 2) = P(X2 < 2. X <. X1 < 2
= P(-XZ} <z, Xy < ’l‘j,.Ys < Z)
. 1 .
= (1= ™)1 — e (1= 7)1 = 5e T ),

No further assumption is made. We would like to estimate P(Ws >
z) where Ws = min(X,, X», X3, Xy, X5). We choose the events 4; =
(X; < z) and then (ms = 0) = (W5 > 2). For a numerical calculation,
let us choose z = 0.1. We then estimate P{(Ws5 > 0.1). We have

Sis=5(1-e"")=047580

Z P(A; N A;)=T[(1— e 1)1 — lover2e™"?)] = 0.03744
i<j<=i+2

Z P(AiNAig1 N Aig) =3[(1 — ¢ %131 — lover3e %))

= 0.00195.

Theorem 1 now gives P(U3_, A;) = P(m, > 1) < 0.44031. As was
pointed out, with the events (X; < 0.1)

(7) P(Ws >20.1) = P(m,, =0)=1—- P(m, > 1) > 0.55969
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When we use the method of maximum spanning tree by Worsley by
choosing T = (¢12,¢23,** «Ch—1.,), We have

n n—1
(8) P(URL A) €Y P(A) = Y P(4i N Aigy).
i=1 =1

This yields
P(m, > 1) <0.45441

which can be written as
(9) P(Ws >0.1) = P(m, = 0) > 0.54559

It is, of course, not surprising that (7) was a better estimate than (9).
While (9) is the best possible that can be obtained in terms of 3~ P(A4;)
and Y P(A; N Ai41), in (7) we made use of further information on
the X;. In order to give upper bounds for P(W5 > 0.1), we assume,
in addition to those which led to (7), that every pair not in (a) is
independent. Then we get lower bound of P{UA;) by the method of
Margolin and Maurer; that is,

(10) P(U?:]“L) 2 Sl.n - 52.11 + ll'lax(i;ér¢j,i<])P(‘4i N "1]' nAd,)

By (10), we get
P(U?_, 4;) > 0.41314

which can be written as

P(Ws > 0.1) < 0.5868¢.

EXAMPLE 2. Consider numerical example 3.1 [peak periods of a dis-
ease] in the paper of Worsley. We calculate the bivariate normal distri-
bution P(A1NA;), P(4:NAy), P(A3NAs) and P(A3NAg) with covari-
ance p; i1 = % and the trivariate normal distribution P{4, N 45N A3,
P(A2NA3NAy), P(A3NA3NA;), and P(A3NAs N Ag) with p 4y = %
and p;it2 = % Then our new estimate (2) is better than (8) because
the right hand side of (8) is greater than or equal to the right hand
side of (2). Also, we can get better lower bound by (10) which clearly
improves on the Bonferroni lower bound S, - S,.,..
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