NATURALLY REDUCTIVE HOMOGENEOUS SPACE $R^4 \setminus (0)$

JOON-SIK PARK

1. Introduction and main results

The complete classification of the simply connected four dimensional naturally reductive homogeneous spaces is given in [3].

In this paper, we treat a 'not simply connected', reductive homogeneous space $(R^{\times}SU(2),g)$, or $(R^{4}\setminus(0),g)$, with a left invariant Riemannian metric g whose hypersurface is $(SU(2),\bar{g})$, or (S^{3},\bar{g}) , where \bar{g} is an arbitrary left invariant Riemannian metric on SU(2). We get a necessary and sufficient condition in order for such a reductive homogeneous space $(R^{\times}SU(2),g)$ to be naturally reductive. And, we show that scalar curvature of $(R^{\times}SU(2),g)$ and the above condition are related subjects. Moreover, we obtain a necessary and sufficient condition in order for an almost complex manifold $(R^{\times}SU(2),g,J)$ to be a complex manifold.

Now, we introduce the Sugahara Lemma:

LEMMA A (CF. [5]). Let \bar{g} be a left invariant Riemannian metric on SU(2). Let <, > be an inner product on $\mathfrak{su}(2)$ defined by < X,Y>:= $\bar{g}_e(X_e,Y_e)$, where $\mathfrak{su}(2)$ is the Lie algebra of SU(2), $X,Y\in\mathfrak{su}(2)$, and e is the identity matrix of SU(2). Then there exists an orthonormal basis (V_1,V_2,V_3) of $\mathfrak{su}(2)$ with respect to <, $>_o$ such that

(1.1)
$$\begin{cases} [V_1, V_2] = (1/\sqrt{2})V_3, & [V_2, V_3] = (1/\sqrt{2})V_1, \\ [V_3, V_1] = (1/\sqrt{2})V_2, & \langle V_i, V_j \rangle = \delta_{ij} a_i^2, \end{cases}$$

Received April 4, 1994.

Key words: Integrable almost complex structure, naturally reductive homogeneous space.

where \langle , \rangle_o is an inner product induced from the Killing form of $\mathfrak{su}(2)$ and $a_i, (i = 1, 2, 3)$, are positive constant real numbers determined by the given left invariant Riemannian metric \bar{g} of SU(2).

For a given left invariant Riemannian metric \bar{g} on SU(2), we fix an orthonormal basis (V_1, V_2, V_3) of $\mathfrak{su}(2)$ with respect to <, $>_o$ with the property (1.1) in Lemma A and denote by $\bar{g}(a_1, a_2, a_3)$, or simply by $\bar{g}(a)$, the left invariant Riemannian metric on SU(2) which is determined by positive real numbers a_1, a_2, a_3 in Lemma A.

In this paper, we get under the notations of Lemma A

THEOREM 1. Let $\bar{g}(a)$ be a left invariant Riemannian metric on SU(2). Let g(a) be a left invariant Riemannian metric on $R^{\times}SU(2)(=:G)$ determined by an orthonormal basis $\{X_1 := V_1/a_1, X_2 := V_2/a_2, X_3 := V_3/a_3, X_4 := I_2/a_4\}$ on $T_e(G)$, where a_4 is a positive constant and I_2 the unit matrix of order 2. Then, (G, g(a)) is naturally reductive if and only if $a_1 = a_2 = a_3$.

COROLLARY 2. Assume $a_2 = a_3$ in (G, g(a)) of Theorem 1. Then, (G, g(a)) is naturally reductive if and only if the scalar curvature of (G, g(a)) is $3/4a_2^2$.

THEOREM 3. Under the assumption of Theorem 1, let J be a tensor field of type (1.1) on G defined by $JX_1 = X_4$, $JX_2 = X_3$, $JX_3 = -X_2$ and $JX_4 = -X_1$. Then, in order for the structure tensor field J of an almost complex manifold (G, g(a), J) to be a complex structure, it is necessary and sufficient that $a_2 = a_3$.

COROLLARY 4. If (G, g(a)) is a naturally reductive Riemannian homogeneous space, then (G, g(a), J) in Theorem 3 is a complex manifold.

2. Preliminaries

2.1. A homogeneous space K/T of a connected Lie group K is called reductive if the following condition is satisfied: in the Lie algebra \mathfrak{k} of K there exists a subspace \mathfrak{m} such that $\mathfrak{k} = \mathfrak{m} + \mathfrak{t}$ (direct sum of vecter spaces) and $Ad(t)\mathfrak{m} \subset \mathfrak{m}$ for all $t \in T$, where \mathfrak{t} is the subalgebra of \mathfrak{k} corresponding to the identity component T_o of T and Ad(t) denotes the adjoint representation of T in \mathfrak{k} .

Let <, > be an inner product which is invariant with respect to Ad(T) on \mathfrak{m} . This inner product <, > determines an invariant Riemannian metric g on K/T. Then the connection function α (cf. [1, p. 43]) on $\mathfrak{m} \times \mathfrak{m}$ corresponding to the K-invariant Riemannian connection of a reductive Riemannian homogeneous space (K/T, g) is given as follows (cf. [1, p. 52]):

(2.1)
$$\alpha(X,Y) = (1/2) [X,Y]_{\mathfrak{m}} + U(X,Y), \qquad (X,Y \in \mathfrak{m}),$$

where U(X,Y) is determined by

(2.2)
$$2 < U(X,Y), Z >$$

= $< [Z, X]_{\mathfrak{m}}, Y > + < X, [Z, Y]_{\mathfrak{m}} >, \qquad (X, Y, Z \in \mathfrak{m}),$

where $X_{\mathfrak{m}}$ denotes the \mathfrak{m} -component of an element $X \in \mathfrak{k} = \mathfrak{t} + \mathfrak{m}$. The curvature tensor R at $\{T\} \in K/T$ is given by

(2.3)

$$R(X,Y)Z = \alpha(X,\alpha(Y,Z)) - \alpha(Y,\alpha(X,Z)) - \alpha([X,Y]_{\mathfrak{m}},Z) - [[X,Y]_{\mathfrak{t}},Z], \qquad (X,Y,Z \in \mathfrak{m}).$$

A reductive Riemannian homogeneous space (K/T,g) is called naturally reductive if the following condition is satisfied: Let x(s) be the 1-parameter subgroup of K generated by an arbitrary given element $X \in \mathfrak{m}$, and let $x^*(s)$ be the image of x(s) by the projection π of K onto K/T. Then $x^*(s)$ is a geodesic in (K/T,g). A reductive Riemannian homogeneous space (K/T,g) is naturally reductive if and only if

(2.4)
$$U(X,Y) = 0, (X,Y \in \mathfrak{m}).$$

2.2. Let a Riemannian manifold (M^{2n}, g) have a tensor field J of type (1,1) such that $J^2 = -I$ and g(JX, JY) = g(X,Y), $(X,Y \in \mathfrak{X}(M))$. Such a manifold (M^{2n}, g, J) is called to be an almost complex manifold. A tensor field N of type (1,2) on almost complex manifold (M^{2n}, g, J) given by

$$(2.5) \quad N(X,Y) := J([X,Y]) - [JX,Y] - [X,JY] - J([JX,JY]),$$

 $X,Y\in\mathfrak{X}(M^{2n})$, is called to be Nijenhuis tensor field. Almost complex manifold (M^{2n},g,J) becomes an n-dimensional complex manifold if and only if

(2.6)
$$N(X,Y) = 0$$
, $(X,Y \in \mathfrak{X}(M))$.

3. Proofs of Main Theorem.

We preserve the notations appeared in Theorem 1. We put $G := R^{\times}SU(2)$, $\mathfrak{m} := T_{\epsilon}(R^{\times}SU(2))$ and $c := \sqrt{2}a_1a_2a_3$. We get from (1.1)

(3.1)
$$\begin{cases} [X_1, X_2] = a_3^2 c^{-1} X_3, & [X_2, X_3] = a_1^2 c^{-1} X_1, \\ [X_3, X_1] = a_2^2 c^{-1} X_2, & [X_i, X_4] = 0 \quad (i = 1, 2, 3, 4). \end{cases}$$

From the construction of $g(a)_e$ in (G, g(a)) of Theorem 1, (2.1) and (3.1), m-valued symmetric function U on $m \times m$ is given as follows:

(3.2)
$$\begin{cases} U(X_i, X_i) = U(X_i, X_4) = 0 & (i = 1, 2, 3, 4), \\ U(X_1, X_2) = (-a_1^2 + a_2^2)(2c)^{-1}X_3, & . \\ U(X_2, X_3) = (-a_2^2 + a_3^2)(2c)^{-1}X_1, \\ U(X_3, X_1) = (-a_3^2 + a_1^2)(2c)^{-1}X_2. \end{cases}$$

From (2.4) and (3.2), the proof of Theorem 1 is completed. We get from (2.1), (3.1) and (3.2)

(3.3)
$$\begin{cases} \alpha(X_{i}, X_{i}) = \alpha(X_{i}, X_{4}) = \alpha(X_{4}, X_{i}) = 0 & (i = 1, 2, 3, 4), \\ \alpha(X_{1}, X_{2}) = (-a_{1}^{2} + a_{2}^{2} + a_{3}^{2})(2c)^{-1}X_{3}, \\ \alpha(X_{1}, X_{3}) = (a_{1}^{2} - a_{2}^{2} - a_{3}^{2})(2c)^{-1}X_{2}, \\ \alpha(X_{2}, X_{1}) = (-a_{1}^{2} + a_{2}^{2} - a_{3}^{2})(2c)^{-1}X_{3}, \\ \alpha(X_{2}, X_{3}) = (a_{1}^{2} - a_{2}^{2} + a_{3}^{2})(2c)^{-1}X_{1}, \\ \alpha(X_{3}, X_{1}) = (a_{1}^{2} + a_{2}^{2} - a_{3}^{2})(2c)^{-1}X_{2}, \\ \alpha(X_{3}, X_{2}) = (-a_{1}^{2} - a_{2}^{2} + a_{3}^{2})(2c)^{-1}X_{1}. \end{cases}$$

Let R (resp. S(g(a))) be the Ricci tensor (resp. the scalar curvature) of (G, g(a)). Then we have from (2.3) and (3.3)

(3.4)
$$\begin{cases} R(X_1, X_1) = (a_1^4 - a_2^4 + 2a_2^2 a_3^2 - a_3^4)/2c^2, \\ R(X_2, X_2) = (-a_1^4 + a_2^4 + 2a_1^2 a_3^2 - a_3^4)/2c^2, \\ R(X_3, X_3) = (-a_1^4 - a_2^4 + 2a_1^2 a_2^2 + a_3^4)/2c^2, \\ R(X_4, X_4) = 0. \end{cases}$$

We get from (3.4)

(3.5)
$$S(g(a)) = (-a_1^4 + 2a_1^2 a_2^2 - a_2^4 + 2a_2^2 a_3^2 - a_3^4 + 2a_3^2 a_1^2)/2c^2$$
.

By Thoerem 1 and (3.5), the proof of Corollary 2 is completed. Using (2.5) and (3.1), we have

(3.6)
$$\begin{cases} N(X_1, X_2) = (a_2^2 - a_3^2)c^{-1}X_2, & N(X_1, X_3) = (-a_2^2 + a_3^2)c^{-1}X_3, \\ N(X_1, X_4) = N(X_2, X_3) = 0, & N(X_2, X_4) = (a_2^2 - a_3^2)c^{-1}X_3, \\ N(X_3, X_4) = (a_2^2 - a_3^2)c^{-1}X_2. \end{cases}$$

By (2.6) and (3.6), the proof of Theorem 3 is completed. Moreover, from Theorem 1 and Theorem 3 we can get Corollary 4.

References

- K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- 2. Joon-Sik Park and Wom Tae Oh, Scalar curvatures of invariant metrics, to appear.
- 3. O. Kowalski and L. Vanhecke, Four-dimensional naturally reductive homogeneous spaces, to appear.
- 4. R. Schoen, Conformal deformations of a Riemannian metric to a constant scalar curvature, J. Differential Geom. 20 (1984), 479-495.
- K. Sugahara, The sectional curvature and the diameter estimate for the left invariant Riemannian metrics on SU(2, C) and SO(3, R), Math. Japonica 26 (1981), 153-159.

DEPARTMENT OF MATHEMATICS, PUSAN UNIVERSITY OF FOREIGN STUDIES, PUSAN 608-738, KOREA