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NATURALLY REDUCTIVE
HOMOGENEOUS SPACE R*\(0)

JOON-S1K PARK

1. Introduction and main results

The complete classification of the simply connected four dimensional
naturally reductive homogeneous spaces is given in [3].

In this paper, we treat a ‘not simply connected’, reductive homo-
geneous space (R*SU(2),¢g), or (R*\(0),g), with a left invariant Rie-
mannian metric ¢ whose hypersurface is (SU(2), §), or (S, §), where g
is an arbitrary left invariant Riemannian metric on SU(2). We get a
necessary and sufficient condition in order for such a reductive homoge-
neous space (R*SU(2), g) to be naturally reductive. And, we show that
scalar curvature of (R*SU(2),¢) and the above condition are related
subjects. Moreover, we obtain a necessary and sufficient condition in
order for an almost complex manifold (R*SU(2),g,J) to be a complex
manifold.

Now, we introduce the Sugahara Lemma:

LEMMA A (c¥. [5]). Let g be a left invariant Riemannian metric on
SU(2). Let <, > be an inner product on su(2) defined by < X,Y >:=
Ge(Xe,Ye), where su(2) is the Lie algebra of SU(2), X,Y € su(2), and
e is the identity matrix of SU(2). Then there exists an orthonormal
basis (Vy, Va2, V3) of su(2) with respect to < , >, such that

(L1 {[va,sz = (1/V2)Vs, [V, V] =(1/V2)W4,

Vs, Vi] = (1/V2)Va, < Vi, V; >= bij a2,
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where < , >, is an inner product induced from the Killing form of su(2)
and a;,(: = 1,2,3), are positive constant real numbers determined by
the given left invariant Riemannian metric g of SU(2).

For a given left invariant Riemannian metric § on SU(2), we fix an
orthonormal basis (V1, V2, V3) of su(2) with respect to <, >, with the
property (1.1) in Lemma A and denote by §(a1,as,as), or simply by
G(a), the left invariant Riemannian metric on SU(2) which is deter-
mined by positive real numbers a3, az,a3 in Lemma A.

In this paper, we get under the notations of Lemma A

THEOREM 1. Let g(a) be a left invariant Riemannian metric on
SU(2). Let g(a) be a left invariant Riemannian metric on R*SU(2)(=:
G) determined by an orthonormal basis { X := Vi/a1, Xy := Vo /a2, X3
= Vi/as, X4 := I2/as} on T.(G), where a4 is a positive constant and
I, the unit matrix of order 2. Then, (G, g(a)) is naturally reductive if
and only if a) = a3 = a3.

COROLLARY 2. Assume az = a3 in (G, g(a)) of Theorem 1. Then,
(G, g(a)) is naturally reductive if and only if the scalar curvature of

(G, g(a)) is 3/4a,?.

THEOREM 3. Under the assumption of Theorem 1, let J be a tensor
fleld of type (1.1) on G defined by JX1 = X4, JX2 = X3, JX3 = - X»
and JX4 = —X,. Then, in order for the structure tensor field J of an
almost complex manifold (G,g(a),J) to be a complex structure, it is
necessary and sufficient that a; = u3.

COROLLARY 4. If (G, ¢(a)) is a naturally reductive Riemannian ho-
mogeneous space, then (G, g(«a), J) in Theorem 3 is a complex manifold.

2. Preliminaries

2.1. A homogeneous space I\'/T of a connected Lie group X is called
reductive if the following condition is satisfied: in the Lie algebra £ of
K there exists a subspace m such that € = m 4 t (direct sum of vecter
spaces) and Ad(t)m C m for all t € T, where t is the subalgebra of &
corresponding to the identity component T, of T and Ad(t) denotes the
adjoint representation of T in €.
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Let < , > be an inner product which is invariant with respect to
Ad(T) on m. This inner product < , > determines an invariant Rie-
mannian metric ¢ on i/T. Then the connection function a (cf. {1, p.
43]) on m x m corresponding to the A-invariant Riemannian connec-

tion of a reductive Riemannian homogeneous space (§/T), g) is given as
follows (cf. [1, p. 52]):

(2.1) a(X,Y) = (1/2) [X,Y]m + UX,Y), (X,Y €mj,
where U(X,Y) is determined by

(2.2) 2<UXY)Z>
=< [Z,X]a,Y >+ < X,[Z,Y]n >, (X,Y,Z € m),

where X, denotes the m-component of an element X € £ = t+m. The
curvature tensor R at {T} € /T is given by

(2.3)
R(X,Y)Z =a(X,a(Y,Z)) — a(Y,a(X, Z))
—a([X,Y]m. Z2) - [X,Y]. 2], (X,Y.Z€m).

A reductive Riemannian homogeneous space (K/T, g) is called nat-
urally reductive if the following condition is satisfied : Let x(s) be the
1-parameter subgroup of I generated by an arbitrary given element
X € m, and let z*(s) be the image of z(s) by the projection = of I{
onto i/T. Then x*(s) is a geodesic in (K/T, ¢ . A reductive Riemanu-
ian homogeneous space (I{/T, ¢} is naturally reductive if and only if

(2.4) UX,Y)=0, (X.,Y em)

2.2. Let a Riemannian manifold (M?2", ¢) have a tensor field .J of type
(1,1) such that J* = —I and ¢(JX,JY) = g(X,Y), (X,Y € X(A)).
Such a manifold (M?2", g, J) is called to be an almost complex manifold.
A tensor field N of type (1,2) on almost complex manifold (M*",g,J)
given by

(2.5) N(X,Y):= J(X.Y]) - [JX,Y]) = [X,JY] = J([JX, JY)),
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X,Y € X(M?™), is called to be Nijenhuis tensor field. Almost complex
manifold (M?", ¢, J) becomes an n-dimensional complex manifold if
and only if

(26) N(X,Y)=0, (X,Y ¢ X(M)).

3. Proofs of Main Theorem.

We preserve the notations appeared in Theorem 1. We put G :=
R*SU(2), m:= T.(R*SU(2)) and ¢ := 2a;a3a3. We get from (1.1)

1) [P Xl= afc X, (X, Xa]= afc7lX,
' (X3, Xi]= a’c7'X, [Xi, X4=0 (i=1,2,34).

From the construction of g(a)e in (G, g(a)) of Theorem 1, (2.1) and
(3.1), m-valued symmetric function U/ on m x m is given as follows:

UX:, Xi)=U(X;, Xy) =0 (:=1,2,3,4),
U(‘Xla -Y ) = (_(I’l +a 2)( ) ‘X33
U(X,, X3)= (——(12 +a3 )N 'X,,

(3.2) 26y
U(Xs, X1) = (—ag® + a,%)(2¢) 71 X;.

From (2.4) and (3.2), the proof of Theorem 1 is completed.
We get from (2.1), (3.1) and (3.2)

Ca(Xi, Xi) = a(Xi, Xa) = a( X5, X.) =0 (i =1,2,3,4),
a(X1, X2) = (—a;” + ;" + a3")(2¢) 7' X3,
a(X1,X3) = (a,° — a)® — a3’)(2¢) 7} X,
(3.3) { a(X2,X1)=(~a)* +a, - “;2)()C ' Xs,
(X2, X3) = (¢,® - “z + ag?)(2¢ ‘Xla
a(X3, X1) = (a)” + a? — a”)(2 )
a(X3, X2) = (-4 — a” + a;?) ()C) X

284



Naturally reductive homogeneous space R*\(0)

Let R (resp. S(g(a))) be the Ricci tensor (resp. the scalar curvature)
of (G, g(a)). Then we have from (2.3) and (3.3)

R(X1,X1) = (a,* — ' 4+ 2ata? — ay*)/263,

R(X2,X2) = (—a;* + a,* + 2a,%ay® — a3*) /2,

R(X3,X3) = (—a;,* — ay* 4 2a,2a? 4 a3')/22,
R(X4,X4)=0.

(3.4)

We get from (3.4)
(3.5) S(g(a)) = (—a,* + 24,20 — ay* + 202 a — a3* + 2a52a,?)/2¢ ?

By Thoerem 1 and (3.5), the proof of Corollary 2 is completed.
Using (2.5) and (3.1), we have

N(X1,X2) = (at —a2)e™ Xo,  N(Xq, X3) = (—ay? + a;f)e™ ' XNa,
(3.6) { N(X1,Xy) = N(X2,X5) =0,  N(X2,.X4) = (a2 — a?)e X3,
N(Xg,.’(g;) = (CLQ2 - uag)c"l.\'y

By (2.6) and (3.6), the proof of Theorem 3 is completed. Moreover,
from Theorem 1 and Theorem 3 we can get Corollary 4.
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