RANGE OF PARAMETER FOR THE EXISTENCE OF PERIODIC SOLUTIONS OF LIÉNARD DIFFERENTIAL EQUATIONS ## YONG-HOON LEE ## 1. Introduction In 1986, Fabry, Mawhin and Nkashama [1] have considered periodic solutios for Liénard equation $$(1_s) x'' + f(x)x' + g(t, x) = s,$$ where s is a real parameter, f and g are continuous functions, and g is 2π -periodic in t and have proved that if (H) $$\lim_{|x| \to \infty} g(t, x) = \infty \quad \text{uniformly in } t \in [0, 2\pi],$$ there exists $s_1 \in \mathbf{R}$ such that (1_s) has no 2π periodic solution if $s < s_1$, and at least one 2π -periodic solution if $s = s_1$, and at least two 2π -periodic solutions if $s > s_1$. Problems (Results) depending on a real parameter s and having a similar result like the above are called the Ambrosetti-Prodi type problems (results) and this type of problems has been studied for a wide class of differential equations ([2] and references therein). What we are concerned here is range of parameter s_1 of the existence for which one may intuitively guess that s_1 may strongly interact with the nonlinear term. In this note, we prove a little weak version of Received March 23, 1994. ¹⁹⁹¹ AMS Subject Classification: 34A34, 34B15, 34C25. Key words: Existence, multiplicity, periodic solution. Liénard equation, a priori estimate, coincidence degree. This work was supported by the Basic Science Research Institute Program, Ministry of Education, 1993. ### Yong-Hoon Lee Ambrosetti-Prodi type result for the problem and give a bound of s_1 in terms of g(t,x). The proof is basically different from [1] and generally along the lines of [2]. In what follows, $J=[0,2\pi]$. Mean value \bar{x} of x and the function \hat{x} of mean value 0 are respectively defined by $\bar{x}=\frac{1}{2\pi}\int_0^{2\pi}x(t)dt$ and $\hat{x}(t)=x(t)-\bar{x}$. The symbol $C^k(J)$ will be denote the real Banach space of continuous functions $J\mapsto \mathbf{R}$ whose derivatives through order k are also continuous, and $C^k_{2\pi}(J)$ the real Banach space of 2π -periodic functions of class $C^k(J)$. Both spaces will be equipped with norm $\|x\|_{\infty}+\cdots+\|x^{(k)}\|_{\infty}$, where $\|u\|_{\infty}=\sup_{t\in J}|u(t)|$. If $x\in C^0_{2\pi}(J)$ we define $\|x\|_2^2=\frac{1}{2\pi}\int_0^{2\pi}|x(t)|^2dt$. SOBOLEV INEQUALITY [3]. If $x \in C^0_{2\pi}(J) \cap C^1(J)$ and of mean value 0, then $$|| x ||_{\infty} \le \frac{\pi}{\sqrt{3}} || x' ||_{2} \le \frac{\pi}{\sqrt{3}} || x' ||_{\infty}.$$ By the continuity of g and condition (H), g attains the minimum, so let $$g(t_o, x_o) = \min_{\substack{t \in J \\ x \in \mathbf{R}}} g(t, x).$$ Now we state the main theorem. THEOREM 1. If (H) is satisfied, and let $g(t_o, x_o) = \min_{t,x} g(t, x)$, then for $s_o = \min_{t,x} g(t,x)$ and $\bar{s} = \max_{t \in J} g(t, x_o)$, - (i) (s) has no 2π -periodic solution for $s < s_o$, - (ii) (1_s) has at least one 2π -periodic solution for $s = \bar{s}$, - (iii) (1_s) has at least two 2π -periodic solution for $s > \bar{s}$. We give a priori bound of possible 2π -periodic solutions for a homotopy of (1_s) in section 2, and some degree computations and proof of the main theorem in section 3, and we end up with some remarks on the range of s_1 and an autonomous Liénard differential equation. # 2. A priori estimate For convinience, we consider the problem under the following condition for a while. (C) $$0 = g(t_o, 0) = \min_{\substack{t \in J \\ x \in \mathbf{R}}} g(t, x)$$ We shall obtain a priori bound for possible 2π -periodic solutions of $$(2^{\mu}_{s}) \qquad x''(t) + (1-\mu)|x(t)| + \mu f(x(t))x'(t) + \mu g(t, x(t)) = s,$$ where $\mu \in [0, 1]$. LEMMA 1. If (H) is satisfied, then for each $s^* \in \mathbf{R}$, there exist M, V > 0 such that for each $s \leq s^*$ and each possible 2π -periodic solution x of (2^{μ}_{s}) , one has $$\parallel x \parallel_{\infty} < M, \quad \parallel x' \parallel_{\infty} <$$ **Proof.** Let s^* be given, $s \leq s^*$ and let x be a 2π -periodic solution of (2^{μ}_s) , then (3) $$\frac{1}{2\pi} \int_0^{2\pi} (1-\mu)|x(t)| + \mu g(t,x(t))dt = s.$$ Without loss of generality, we assume $0 \le s$ ($\le s^*$), otherwise (2_s^{μ}) does not have a 2π -periodic solution by (3). Multiplying \tilde{x} and integrating both sides of (2_s^{μ}), we get $$||x'||_{2}^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} \tilde{x}(t) \{ (1-\mu)|x(t)| + \mu g(t, x(t)) \} dt$$ $$\leq \frac{1}{2\pi} ||\tilde{x}||_{\infty} \int_{0}^{2\pi} (1-\mu)|x(t)| + \mu g(t, x(t)) dt$$ $$= s ||\tilde{x}||_{\infty}$$ $$\leq \frac{\pi}{\sqrt{3}} s^{*} ||x'||_{2}, \text{ by Sobolev inequality.}$$ Therefore $$||x'||_2 \le \frac{\pi}{\sqrt{3}} s^*.$$ Next, we claim that $x(\tau)$ is bounded for some $\tau \in J$ and for all possible solutions x. We may assume by (H) that there exists $r(s^*) > 0$ such that (4) $$g(t,x) > s^*$$, whenever $|x| \ge r(s^*)$ for all $t \in J$. Mean value theorem for (3) provides that there exists $\tau \in J$ such that $$(1 - \mu)|x(\tau)| + \mu g(\tau, x(\tau)) = s.$$ This implies that s lies between $|x(\tau)|$ and $g(\tau, x(\tau))$, and thus we have either (5) $$|x(\tau)| \le s$$ or $g(\tau, x(\tau)) \le s$. We show that $|x(\tau)| < r(s^*)$ if $g(\tau, x(\tau)) \le s$. Suppose $|x(\tau)| \ge r(s^*)$, then by (4), $g(\tau, x(\tau)) > s^*$. Thus $$s \le s^* < g(\tau, x(\tau)) \le s.$$ This contradiction shows that $$(6) |x(\tau)| < r(s^*).$$ By (5) and (6), $$|x(\tau)| \le \max\{s^*, r(s^*)\}.$$ Choosing R strictly greater than $\max\{s^*, r(s^*)\}\$, we get $$|x(\tau)| < R.$$ Finally, $$|x(t)| \le |x(\tau)| + |\int_{\tau}^{t} x'(s)ds|$$ $\le |x(\tau)| + 2\pi ||x'||_{2}$ $< R + \frac{2\pi^{2}}{\sqrt{3}}s^{*} \equiv M,$ Existence of periodic solutions for Liénard differential equations for all $t \in J$. Therefore $$||x||_{\infty} < M$$. Since $||x'||_2$ is bounded, it is not hard to show in (2_s^{μ}) that $||x''||_2$ is bounded, say $||x''||_2 < \frac{\sqrt{3}}{\pi}V$ for some constant V. Thus by the Sobolev inequality, we obtain $$||x'||_{\infty} < V.$$ # 3. Degree computations We reduce problem (2_s^{μ}) to an equivalent operator form. Let us define $L: D(L) \subset C_{2\pi}^{o}(J) \longrightarrow C^{0}(J)$ by $x \mapsto x''$, where $D(L) = C_{2\pi}^{2}(J)$, and for each $\mu \in [0,1]$, $N_s^{\mu}: C_{2\pi}^{1}(J) \longrightarrow C^{0}(J)$ by $$N_s^{\mu}x(\cdot) = (1-\mu)|x(\cdot)| + \mu f(x(\cdot))x'(\cdot) + g(\cdot, x(\cdot)) - s$$ so that (2_s^{μ}) and (1_s) can be written $$Lx + N_s^{\mu} x = 0,$$ $$Lx + N_s^1 x = 0$$ respectively. It is well-known that L is a Fredholm operator with index 0 and N_s^{μ} is L-compact on $\overline{\Omega}$ for any open bounded $\Omega \subset C_{2\pi}^0$. The coincidence degree $D_L(L+N_s^{\mu},\Omega)$ is well-defined and constant in μ if $L+N_s^{\mu}(x)\neq 0$ for $\mu\in[0,1],\ s\in\mathbf{R}$ and $x\in D(L)\cap\partial\Omega$. **LEMMA** 2. If (H) is satisfied, then for each $s^* \geq 0$ and for each open bounded set $\Omega(s^*) \subset C^1_{2\pi}(J)$ such that $$\Omega(s^*) \supset \{x \in C^1_{2\pi}(J) : ||x||_{\infty} < M, ||x'||_{\infty} < V\},$$ one has $$D_L(L + N_s^1, \Omega(s^*)) = 0$$ whenever $s \le s^*$. **Proof.** Let s^* be given and let $\Omega(s^*)$ be any subset of $C^1_{2\pi}$ containing $\{x \in C^1_{2\pi}(J) : \|x\|_{\infty} < M, \|x'\|_{\infty} < V\}$. Let $s_o = \min_{\substack{t \in J \\ x \in \mathbb{R}}} g(t, x) \ (= 0)$. If (1_s) has a 2π -periodic solution x, then $$s_o \le \frac{1}{2\pi} \int_0^{2\pi} g(t, x(t)) dt = s.$$ #### Yong-Hoon Lee This implies that (1_s) has no 2π -periodic solution for $s < s_o$. Thus by the existence property of degree, we have $$D_L(L + N_s^1, \Omega(s^*)) = 0$$ for $s < s_o$. By a priori estimate and the homotopy invariance of degree, we have, for fixed $\tilde{s} < s_a$, $$D_L(L + N_s^1, \Omega(s^*)) = D_L(L + N_s^1, \Omega(s^*)) = 0,$$ for all $s \leq s^*$. LEMMA 3. If (H) is satisfied, then there exists $\bar{s} \geq s_o$ such that for each $s^* > \bar{s}$, one can find an open bounded set $\Omega_1(s^*)$ in $C^1_{2\pi}(J)$ for which $$|D_L(L + N_s^1, \Omega_1(s^*))| = 1,$$ for $\bar{s} < s \le s^*$. Proof. Let $$\bar{s} = \max_{t \in J} g(t, 0)$$ then $\bar{s} \geq \bar{s}_o$. Let $s^* > \bar{s}$ and let $$\Omega_1(s^*) = \{ x \in C^1_{2\pi}(J) : -M < x(t) < 0, \ t \in J, \ \|x'\|_{\infty} < V \}$$ then $\Omega_1(s^*) \subset \Omega(s^*)$ and since $x \in \Omega_1(s^*)$ is negative, (2_s^{μ}) is equivalent to $$x''(t) - (1 - \mu)x(t) + \mu f(x(t))x'(t) + \mu g(t, x(t)) = s,$$ on $\Omega_1(s^*)$. We show that $D_L(L+N_s^\mu,\Omega(s^*))$ is well-defined for $\bar{s} < s \le s^*$. For $0 < \mu \le 1$, let x be a 2π -periodic solution for (2_s^μ) for $x \in \partial \Omega_1(s^*)$, then $x(\tau) = 0$ for some $\tau \in J$. Since $x(\tau) = \max_{t \in J} x(t)$, $x'(\tau) = 0$ and $x''(\tau) \le 0$. Thus from (2_s^μ) , $$x''(\tau) + \mu q(t, x(\tau)) = s$$ and $$s \le \mu g(t,0) \le \sup_{t \in J} g(t,0) = \bar{s} < s.$$ This contradiction proves that the degree is well-defined for $\mu \in (0, 1]$. For $\mu = 0$, x''(t) - x(t) = s has the only 2π -periodic solution x(t) = -s. Thus for $\bar{s} < s \le s^*$, $x \in \Omega_1(s^*)$. By the normalization property and homotopy invariance of degree, we get $$1 = |D_L(L - I + s, \Omega_1(s^*))|$$ = $|D_L(L + N_s^0, \Omega_1(s^*))|$ = $|D_L(L + N_s^1, \Omega_1(s^*))|$. The following lemma is a parallel version of the main theorem under condition (C). LEMMA 4. If (H) and (C) are satisfied, then for $s_o = \min_{t,x} g(t,x)$ and $\bar{s} = \max_t g(t,x_o)$, - (i) (1_s) has no 2π -periodic solution for $s < s_o$, - (ii) (1_s) has at least one 2π -periodic solution for $s = \bar{s}$, - (iii) (1_s) has at least two 2π -periodic solutions for $s > \bar{s}$. **Proof.** (i) has been proved in Lemma 2. For (iii), if $s > \bar{s}$ then we choose $\Omega(s) \supset \Omega_1(s)$, both of which are defined in Lemma 2 and Lemma 3 respectively, and by the additivity property of degree, we have $$0 = D_L(L + N_s^1, \Omega(s)) = D_L(L + N_s^1, \Omega_1(s)) + D_L(L + N_s^1, \Omega(s) \setminus \overline{\Omega_1(s)}).$$ Since $|D_L(L + N_s^1, \Omega_1(s))| = 1$ by Lemma 3, we have $$|D_L(L+N_s^1,\Omega(s)\setminus\overline{\Omega_1(s)})|=1$$ and thus (1_s) has one 2π -periodic solution in $\Omega(s)$ and another one in $\Omega(s) \setminus \overline{\Omega_1(s)}$. For (ii), let (s_n) be a sequence in \mathbf{R} such that $s_n \to \tilde{s}$ and let x_n be a 2π -periodic solution for (1_{s_n}) , then by a priori estimate, (x_n) is bounded in $C_{2\pi}^1(J)$ with norm $\|x\|_{\infty} + \|x'\|_{\infty}$. Since x_n is a solution of (1_{s_n}) and f, g are continuous, (x_n'') is bounded with the sup-norm so that (x_n) is bounded in $C_{2\pi}^2(J)$ with norm $\|x\|_{\infty} + \|x'\|_{\infty} + \|x''\|_{\infty}$. Since $C_{2\pi}^2$ is compactly embedded in $C_{2\pi}^1$, (x_n) has a subsequence converging to x in $C_{2\pi}^1(J)$. Writing equation (1_s) in integral form, one can easily show that the limit x is a solution of $(1_{\tilde{s}})$, and this completes the proof. We now prove the main theorem. **Proof of Theorem 1.** Let $g(t_o, x_o) = \min_{t,x} g(t,x)$ and let $$\tilde{g}(t,x) = g(t,x+x_o) - g(t_o,x_o)$$ $$\tilde{f}(x) = f(x+x_o)$$ $$\tilde{s} = s - g(t_o,x_o).$$ Then $$\tilde{g}(t_o, 0) = 0$$ and $\tilde{g}(t, x) \ge 0$, for all $t \in J$, $x \in \mathbf{R}$ and furthermore, $$\tilde{g}(t,x) \longrightarrow \infty$$ uniformly in t , as $|x| \to \infty$. Hence the equation $$(7_{\tilde{s}}) \qquad \qquad x'' + \tilde{f}(x)x' + \tilde{g}(t,x) = \tilde{s}$$ satisfies hypotheses in Lemma 4 so that the conclusion (i) \sim (iii) holds for $\tilde{s_o} = \min_{t,x} \tilde{g}(t,x)$ and $\tilde{s} = \max_t g(t,x_o) - g(t_o,x_o)$. We notice that $\tilde{s} < \tilde{s_o}$ and $\tilde{s} > \tilde{s}$ are equivalent to $s < s_o = \min_{t,x} g(t,x)$ and $s > \bar{s} = \max_t g(t,x_o)$ respectively. Let g be a 2π -periodic solution of $(7_{\tilde{s}})$ and let g(t) = g(t) + g(t) + g(t) is equivalent to g(t) = g(t) + g(t) + g(t) for $g(t) = \min_{t,x} g(t,x)$ and $g(t) = \max_t g(t,x_o)$ and the proof is complete. REMARK 1. The existence parameter s_1 in [1] satisfies that for each $(t_o, x_o) \in J \times \mathbf{R}$ with $g(t_o, x_o) = \min_{t,x} g(t, x)$, $$\min_{t,x} g(t,x) \le s_1 \le \max_t g(t,x_o).$$ Since x_o may occur at infinitely many different places in a bounded subset of $J \times \mathbf{R}$, we conclude $$\min_{t,x} g(t,x) \le s_1 \le \inf_{x_o} \max_t g(t,x_o).$$ REMARK 2. If g(t,x) = g(x), then s_o and \bar{s} in Theorem 1 are the same. Thus autonomous Liénard differential equation (8_s) $$x'' + f(x)x' + g(x) = s$$ satisfies that for $s_1 = \min_x g(x)$, - (i) (8_s) has no 2π -periodic solution for $s < s_1$, - (ii) (8_s) has at least one 2π -periodic solution for $s = s_1$, - (iii) (8_s) has at least two 2π -periodic solutions for $s > s_1$. The result is the same as [1] and moreover, we give a sharp estimate of s_1 while [1] gives only the fact that $s_1 \ge \min_x g(x)$. #### References - Fabry C., Mawhin J. and Nkashama M. N., A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc 18 (1986), 173-180. - Lee Y. H., An Ambrosett-Prodi type result for second order weakly coupled systems, Nonlinear Analysis T.M.A. 18(8) (1992), 793-799. - 3. Mawhin J. and Rouche N., Ordinary differential equations: Stability and periodic solutions, Pitman, Boston, 1980. DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, KOREA E-MAIL: YHLEE@HYOWON.PUSAN.AC.KR