RANGE OF PARAMETER FOR THE EXISTENCE OF PERIODIC SOLUTIONS OF LIÉNARD DIFFERENTIAL EQUATIONS

YONG-HOON LEE

1. Introduction

In 1986, Fabry, Mawhin and Nkashama [1] have considered periodic solutios for Liénard equation

$$(1_s) x'' + f(x)x' + g(t, x) = s,$$

where s is a real parameter, f and g are continuous functions, and g is 2π -periodic in t and have proved that if

(H)
$$\lim_{|x| \to \infty} g(t, x) = \infty \quad \text{uniformly in } t \in [0, 2\pi],$$

there exists $s_1 \in \mathbf{R}$ such that (1_s) has no 2π periodic solution if $s < s_1$, and at least one 2π -periodic solution if $s = s_1$, and at least two 2π -periodic solutions if $s > s_1$.

Problems (Results) depending on a real parameter s and having a similar result like the above are called the Ambrosetti-Prodi type problems (results) and this type of problems has been studied for a wide class of differential equations ([2] and references therein).

What we are concerned here is range of parameter s_1 of the existence for which one may intuitively guess that s_1 may strongly interact with the nonlinear term. In this note, we prove a little weak version of

Received March 23, 1994.

¹⁹⁹¹ AMS Subject Classification: 34A34, 34B15, 34C25.

Key words: Existence, multiplicity, periodic solution. Liénard equation, a priori estimate, coincidence degree.

This work was supported by the Basic Science Research Institute Program, Ministry of Education, 1993.

Yong-Hoon Lee

Ambrosetti-Prodi type result for the problem and give a bound of s_1 in terms of g(t,x). The proof is basically different from [1] and generally along the lines of [2].

In what follows, $J=[0,2\pi]$. Mean value \bar{x} of x and the function \hat{x} of mean value 0 are respectively defined by $\bar{x}=\frac{1}{2\pi}\int_0^{2\pi}x(t)dt$ and $\hat{x}(t)=x(t)-\bar{x}$. The symbol $C^k(J)$ will be denote the real Banach space of continuous functions $J\mapsto \mathbf{R}$ whose derivatives through order k are also continuous, and $C^k_{2\pi}(J)$ the real Banach space of 2π -periodic functions of class $C^k(J)$. Both spaces will be equipped with norm $\|x\|_{\infty}+\cdots+\|x^{(k)}\|_{\infty}$, where $\|u\|_{\infty}=\sup_{t\in J}|u(t)|$. If $x\in C^0_{2\pi}(J)$ we define $\|x\|_2^2=\frac{1}{2\pi}\int_0^{2\pi}|x(t)|^2dt$.

SOBOLEV INEQUALITY [3]. If $x \in C^0_{2\pi}(J) \cap C^1(J)$ and of mean value 0, then

$$|| x ||_{\infty} \le \frac{\pi}{\sqrt{3}} || x' ||_{2} \le \frac{\pi}{\sqrt{3}} || x' ||_{\infty}.$$

By the continuity of g and condition (H), g attains the minimum, so let

$$g(t_o, x_o) = \min_{\substack{t \in J \\ x \in \mathbf{R}}} g(t, x).$$

Now we state the main theorem.

THEOREM 1. If (H) is satisfied, and let $g(t_o, x_o) = \min_{t,x} g(t, x)$, then for $s_o = \min_{t,x} g(t,x)$ and $\bar{s} = \max_{t \in J} g(t, x_o)$,

- (i) (s) has no 2π -periodic solution for $s < s_o$,
- (ii) (1_s) has at least one 2π -periodic solution for $s = \bar{s}$,
- (iii) (1_s) has at least two 2π -periodic solution for $s > \bar{s}$.

We give a priori bound of possible 2π -periodic solutions for a homotopy of (1_s) in section 2, and some degree computations and proof of the main theorem in section 3, and we end up with some remarks on the range of s_1 and an autonomous Liénard differential equation.

2. A priori estimate

For convinience, we consider the problem under the following condition for a while.

(C)
$$0 = g(t_o, 0) = \min_{\substack{t \in J \\ x \in \mathbf{R}}} g(t, x)$$

We shall obtain a priori bound for possible 2π -periodic solutions of

$$(2^{\mu}_{s}) \qquad x''(t) + (1-\mu)|x(t)| + \mu f(x(t))x'(t) + \mu g(t, x(t)) = s,$$

where $\mu \in [0, 1]$.

LEMMA 1. If (H) is satisfied, then for each $s^* \in \mathbf{R}$, there exist M, V > 0 such that for each $s \leq s^*$ and each possible 2π -periodic solution x of (2^{μ}_{s}) , one has

$$\parallel x \parallel_{\infty} < M, \quad \parallel x' \parallel_{\infty} <$$

Proof. Let s^* be given, $s \leq s^*$ and let x be a 2π -periodic solution of (2^{μ}_s) , then

(3)
$$\frac{1}{2\pi} \int_0^{2\pi} (1-\mu)|x(t)| + \mu g(t,x(t))dt = s.$$

Without loss of generality, we assume $0 \le s$ ($\le s^*$), otherwise (2_s^{μ}) does not have a 2π -periodic solution by (3). Multiplying \tilde{x} and integrating both sides of (2_s^{μ}), we get

$$||x'||_{2}^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} \tilde{x}(t) \{ (1-\mu)|x(t)| + \mu g(t, x(t)) \} dt$$

$$\leq \frac{1}{2\pi} ||\tilde{x}||_{\infty} \int_{0}^{2\pi} (1-\mu)|x(t)| + \mu g(t, x(t)) dt$$

$$= s ||\tilde{x}||_{\infty}$$

$$\leq \frac{\pi}{\sqrt{3}} s^{*} ||x'||_{2}, \text{ by Sobolev inequality.}$$

Therefore

$$||x'||_2 \le \frac{\pi}{\sqrt{3}} s^*.$$

Next, we claim that $x(\tau)$ is bounded for some $\tau \in J$ and for all possible solutions x. We may assume by (H) that there exists $r(s^*) > 0$ such that

(4)
$$g(t,x) > s^*$$
, whenever $|x| \ge r(s^*)$

for all $t \in J$. Mean value theorem for (3) provides that there exists $\tau \in J$ such that

$$(1 - \mu)|x(\tau)| + \mu g(\tau, x(\tau)) = s.$$

This implies that s lies between $|x(\tau)|$ and $g(\tau, x(\tau))$, and thus we have either

(5)
$$|x(\tau)| \le s$$
 or $g(\tau, x(\tau)) \le s$.

We show that $|x(\tau)| < r(s^*)$ if $g(\tau, x(\tau)) \le s$. Suppose $|x(\tau)| \ge r(s^*)$, then by (4), $g(\tau, x(\tau)) > s^*$. Thus

$$s \le s^* < g(\tau, x(\tau)) \le s.$$

This contradiction shows that

$$(6) |x(\tau)| < r(s^*).$$

By (5) and (6),

$$|x(\tau)| \le \max\{s^*, r(s^*)\}.$$

Choosing R strictly greater than $\max\{s^*, r(s^*)\}\$, we get

$$|x(\tau)| < R.$$

Finally,

$$|x(t)| \le |x(\tau)| + |\int_{\tau}^{t} x'(s)ds|$$

 $\le |x(\tau)| + 2\pi ||x'||_{2}$
 $< R + \frac{2\pi^{2}}{\sqrt{3}}s^{*} \equiv M,$

Existence of periodic solutions for Liénard differential equations

for all $t \in J$. Therefore

$$||x||_{\infty} < M$$
.

Since $||x'||_2$ is bounded, it is not hard to show in (2_s^{μ}) that $||x''||_2$ is bounded, say $||x''||_2 < \frac{\sqrt{3}}{\pi}V$ for some constant V. Thus by the Sobolev inequality, we obtain

$$||x'||_{\infty} < V.$$

3. Degree computations

We reduce problem (2_s^{μ}) to an equivalent operator form. Let us define $L: D(L) \subset C_{2\pi}^{o}(J) \longrightarrow C^{0}(J)$ by $x \mapsto x''$, where $D(L) = C_{2\pi}^{2}(J)$, and for each $\mu \in [0,1]$, $N_s^{\mu}: C_{2\pi}^{1}(J) \longrightarrow C^{0}(J)$ by

$$N_s^{\mu}x(\cdot) = (1-\mu)|x(\cdot)| + \mu f(x(\cdot))x'(\cdot) + g(\cdot, x(\cdot)) - s$$

so that (2_s^{μ}) and (1_s) can be written

$$Lx + N_s^{\mu} x = 0,$$

$$Lx + N_s^1 x = 0$$

respectively. It is well-known that L is a Fredholm operator with index 0 and N_s^{μ} is L-compact on $\overline{\Omega}$ for any open bounded $\Omega \subset C_{2\pi}^0$. The coincidence degree $D_L(L+N_s^{\mu},\Omega)$ is well-defined and constant in μ if $L+N_s^{\mu}(x)\neq 0$ for $\mu\in[0,1],\ s\in\mathbf{R}$ and $x\in D(L)\cap\partial\Omega$.

LEMMA 2. If (H) is satisfied, then for each $s^* \geq 0$ and for each open bounded set $\Omega(s^*) \subset C^1_{2\pi}(J)$ such that

$$\Omega(s^*) \supset \{x \in C^1_{2\pi}(J) : ||x||_{\infty} < M, ||x'||_{\infty} < V\},$$

one has

$$D_L(L + N_s^1, \Omega(s^*)) = 0$$
 whenever $s \le s^*$.

Proof. Let s^* be given and let $\Omega(s^*)$ be any subset of $C^1_{2\pi}$ containing $\{x \in C^1_{2\pi}(J) : \|x\|_{\infty} < M, \|x'\|_{\infty} < V\}$. Let $s_o = \min_{\substack{t \in J \\ x \in \mathbb{R}}} g(t, x) \ (= 0)$. If (1_s) has a 2π -periodic solution x, then

$$s_o \le \frac{1}{2\pi} \int_0^{2\pi} g(t, x(t)) dt = s.$$

Yong-Hoon Lee

This implies that (1_s) has no 2π -periodic solution for $s < s_o$. Thus by the existence property of degree, we have

$$D_L(L + N_s^1, \Omega(s^*)) = 0$$
 for $s < s_o$.

By a priori estimate and the homotopy invariance of degree, we have, for fixed $\tilde{s} < s_a$,

$$D_L(L + N_s^1, \Omega(s^*)) = D_L(L + N_s^1, \Omega(s^*)) = 0,$$

for all $s \leq s^*$.

LEMMA 3. If (H) is satisfied, then there exists $\bar{s} \geq s_o$ such that for each $s^* > \bar{s}$, one can find an open bounded set $\Omega_1(s^*)$ in $C^1_{2\pi}(J)$ for which

$$|D_L(L + N_s^1, \Omega_1(s^*))| = 1,$$

for $\bar{s} < s \le s^*$.

Proof. Let

$$\bar{s} = \max_{t \in J} g(t, 0)$$

then $\bar{s} \geq \bar{s}_o$. Let $s^* > \bar{s}$ and let

$$\Omega_1(s^*) = \{ x \in C^1_{2\pi}(J) : -M < x(t) < 0, \ t \in J, \ \|x'\|_{\infty} < V \}$$

then $\Omega_1(s^*) \subset \Omega(s^*)$ and since $x \in \Omega_1(s^*)$ is negative, (2_s^{μ}) is equivalent to

$$x''(t) - (1 - \mu)x(t) + \mu f(x(t))x'(t) + \mu g(t, x(t)) = s,$$

on $\Omega_1(s^*)$. We show that $D_L(L+N_s^\mu,\Omega(s^*))$ is well-defined for $\bar{s} < s \le s^*$. For $0 < \mu \le 1$, let x be a 2π -periodic solution for (2_s^μ) for $x \in \partial \Omega_1(s^*)$, then $x(\tau) = 0$ for some $\tau \in J$. Since $x(\tau) = \max_{t \in J} x(t)$, $x'(\tau) = 0$ and $x''(\tau) \le 0$. Thus from (2_s^μ) ,

$$x''(\tau) + \mu q(t, x(\tau)) = s$$

and

$$s \le \mu g(t,0) \le \sup_{t \in J} g(t,0) = \bar{s} < s.$$

This contradiction proves that the degree is well-defined for $\mu \in (0, 1]$. For $\mu = 0$, x''(t) - x(t) = s has the only 2π -periodic solution x(t) = -s. Thus for $\bar{s} < s \le s^*$, $x \in \Omega_1(s^*)$. By the normalization property and homotopy invariance of degree, we get

$$1 = |D_L(L - I + s, \Omega_1(s^*))|$$

= $|D_L(L + N_s^0, \Omega_1(s^*))|$
= $|D_L(L + N_s^1, \Omega_1(s^*))|$.

The following lemma is a parallel version of the main theorem under condition (C).

LEMMA 4. If (H) and (C) are satisfied, then for $s_o = \min_{t,x} g(t,x)$ and $\bar{s} = \max_t g(t,x_o)$,

- (i) (1_s) has no 2π -periodic solution for $s < s_o$,
- (ii) (1_s) has at least one 2π -periodic solution for $s = \bar{s}$,
- (iii) (1_s) has at least two 2π -periodic solutions for $s > \bar{s}$.

Proof. (i) has been proved in Lemma 2. For (iii), if $s > \bar{s}$ then we choose $\Omega(s) \supset \Omega_1(s)$, both of which are defined in Lemma 2 and Lemma 3 respectively, and by the additivity property of degree, we have

$$0 = D_L(L + N_s^1, \Omega(s)) = D_L(L + N_s^1, \Omega_1(s)) + D_L(L + N_s^1, \Omega(s) \setminus \overline{\Omega_1(s)}).$$

Since $|D_L(L + N_s^1, \Omega_1(s))| = 1$ by Lemma 3, we have

$$|D_L(L+N_s^1,\Omega(s)\setminus\overline{\Omega_1(s)})|=1$$

and thus (1_s) has one 2π -periodic solution in $\Omega(s)$ and another one in $\Omega(s) \setminus \overline{\Omega_1(s)}$. For (ii), let (s_n) be a sequence in \mathbf{R} such that $s_n \to \tilde{s}$ and let x_n be a 2π -periodic solution for (1_{s_n}) , then by a priori estimate, (x_n) is bounded in $C_{2\pi}^1(J)$ with norm $\|x\|_{\infty} + \|x'\|_{\infty}$. Since x_n is a solution of (1_{s_n}) and f, g are continuous, (x_n'') is bounded with the sup-norm so that (x_n) is bounded in $C_{2\pi}^2(J)$ with norm $\|x\|_{\infty} + \|x'\|_{\infty} + \|x''\|_{\infty}$. Since $C_{2\pi}^2$ is compactly embedded in $C_{2\pi}^1$, (x_n) has a subsequence converging to x in $C_{2\pi}^1(J)$. Writing equation (1_s) in integral form, one can easily show that the limit x is a solution of $(1_{\tilde{s}})$, and this completes the proof.

We now prove the main theorem.

Proof of Theorem 1. Let $g(t_o, x_o) = \min_{t,x} g(t,x)$ and let

$$\tilde{g}(t,x) = g(t,x+x_o) - g(t_o,x_o)$$

$$\tilde{f}(x) = f(x+x_o)$$

$$\tilde{s} = s - g(t_o,x_o).$$

Then

$$\tilde{g}(t_o, 0) = 0$$
 and $\tilde{g}(t, x) \ge 0$,

for all $t \in J$, $x \in \mathbf{R}$ and furthermore,

$$\tilde{g}(t,x) \longrightarrow \infty$$
 uniformly in t , as $|x| \to \infty$.

Hence the equation

$$(7_{\tilde{s}}) \qquad \qquad x'' + \tilde{f}(x)x' + \tilde{g}(t,x) = \tilde{s}$$

satisfies hypotheses in Lemma 4 so that the conclusion (i) \sim (iii) holds for $\tilde{s_o} = \min_{t,x} \tilde{g}(t,x)$ and $\tilde{s} = \max_t g(t,x_o) - g(t_o,x_o)$. We notice that $\tilde{s} < \tilde{s_o}$ and $\tilde{s} > \tilde{s}$ are equivalent to $s < s_o = \min_{t,x} g(t,x)$ and $s > \bar{s} = \max_t g(t,x_o)$ respectively. Let g be a 2π -periodic solution of $(7_{\tilde{s}})$ and let g(t) = g(t) + g(t) + g(t) is equivalent to g(t) = g(t) + g(t) + g(t) for $g(t) = \min_{t,x} g(t,x)$ and $g(t) = \max_t g(t,x_o)$ and the proof is complete.

REMARK 1. The existence parameter s_1 in [1] satisfies that for each $(t_o, x_o) \in J \times \mathbf{R}$ with $g(t_o, x_o) = \min_{t,x} g(t, x)$,

$$\min_{t,x} g(t,x) \le s_1 \le \max_t g(t,x_o).$$

Since x_o may occur at infinitely many different places in a bounded subset of $J \times \mathbf{R}$, we conclude

$$\min_{t,x} g(t,x) \le s_1 \le \inf_{x_o} \max_t g(t,x_o).$$

REMARK 2. If g(t,x) = g(x), then s_o and \bar{s} in Theorem 1 are the same. Thus autonomous Liénard differential equation

(8_s)
$$x'' + f(x)x' + g(x) = s$$

satisfies that for $s_1 = \min_x g(x)$,

- (i) (8_s) has no 2π -periodic solution for $s < s_1$,
- (ii) (8_s) has at least one 2π -periodic solution for $s = s_1$,
- (iii) (8_s) has at least two 2π -periodic solutions for $s > s_1$.

The result is the same as [1] and moreover, we give a sharp estimate of s_1 while [1] gives only the fact that $s_1 \ge \min_x g(x)$.

References

- Fabry C., Mawhin J. and Nkashama M. N., A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc 18 (1986), 173-180.
- Lee Y. H., An Ambrosett-Prodi type result for second order weakly coupled systems, Nonlinear Analysis T.M.A. 18(8) (1992), 793-799.
- 3. Mawhin J. and Rouche N., Ordinary differential equations: Stability and periodic solutions, Pitman, Boston, 1980.

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, KOREA

E-MAIL: YHLEE@HYOWON.PUSAN.AC.KR