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RANGE OF PARAMETER FOR THE
EXISTENCE OF PERIODIC SOLUTIONS OF
LIENARD DIFFERENTIAL EQUATIONS

YONG-HOON LEE

1. Introduction

In 1986, Fabry, Mawhin and Nkashama [1] have considered periodic
solutios for Liénard equation

(1) 2" + fla)a’ + gt 2) = s,

where s is a real parameter, f and g are continious functions, and g is
2r-periodic in t and have proved that if

(H) lim g¢(t,z) =oc uniformly int € [0,2x],

jz|—o0

there exists s; € R such that (1,) has no 2wperiodic solution if s < s1,
and at least one 2n-periodic solution if s = s;, and at least two 2n-
periodic solutions if s > s;.

Problems (Results) depending on a real parameter s and having a
similar result like the above are called the Ambrosetti-Prodi type prob-
lems (results) and this type of problems has been studied for a wide
class of differential equations ([2] and references therein).

What we are concerned here is range of parameter s; of the existence
for which one may intuitively guess that s; may strongly interact with
the nonlinear term. In this note, we prove a little weak version of
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Ambrosetti-Prodi type result for the problem and give a bound of s; in
terms of g(¢,z). The proof is baswally different from [1] and generally
along the lines of [2].

In what follows, J = [0,2r]. Mean value # of z and the function

z of mean value 0 are respectively defined by 7 = 5{; foh z(t)dt and
&(t) = z(t) — . The symbol C*(J) will be denote the real Banach
space of continuous functions J — R whose derivatives through order
k are also continuous, and C}, (J) the real Banach space of 2r-periodic
functions of class C*(J). Both spaces will be equipped with norm
Iz lloo +-+ 4 || 2 Jloo, where || « |joc= supgey lu(t)]. ¥z € C3.(J)
we define || z 3=+ 2” [2(t)|?dt.

SOBOLEV INEQUALITY [3]. Hx € CY_(J)NCY(J) and of mean value
0, then
v

£ oo 2 |l &' < = [l 2’ 1o -
| 7 7

By the continuity of g and condition (H), ¢ attamns the minimum,
so let
g(te,2,) = 1tnei.1]1 g(t,z).
z€R

Now we state the main theorem.

THEOREM 1. If (H) is satisfied, and let g(t,,2,) = min, ; ¢(t,2),
then for s, = miny ; g(t,2) and 3 = maxseg ¢(t, 2,),

(i) (s) has no 2m-periodic solution for s < s,,

(i1) (1,) has at least one 2r-periodic solution for s = 3,

i11) (1) has at least two 2r-periodic solution for s > 5.
. P

We give a priori bound of possible 27 —periodic solutions for a ho-
motopy of (1,) in section 2, and some degree computations and proof
of the main theorem in section 3, and we end up with some remarks on
the range of s; and an autonomous Liénard differential equation.
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2. A priori estimate

For convinience, we consider the problem under the following condi-
tion for a while.

(C) 0=g¢g(t,,0) = mip g(t, =)
réR

We shall obtain a prior: bound for possible 27-periodic solutions of
(28) ")+ (1 — et + pfx(t)a’(t) + pg(t, 2(t) = s,

where p € [0, 1].

LEMMA 1. If (H) is satisfled, then for each s* € R, there exist
M, V > 0 such that for each s < s* and each possible 2r-periodic
solution = of (2#), one has

o lloo< M. || 2 o<

Proof. Let s* be given, s < s* and let @ be a 27-periodic solution of
(2#), then

1 27

(3) — (1 = ) (t)] + pgt, z(t))dt = s.
0

2n

Without loss of generality, we assume 0 < s (< s*), otherwise (2%) does
not have a 27-periodic solution by (3). Multiplying # and integrating
both sides of (2%), we get

1 2n
le'llz = 5= [ @O = ()] + pglt,x(t)}dt
2 Ju
1 ~ 2r
< ?)_”T”oo/ (1 — w)|z(t)] + pg(t, z(t))dt
27 o
= s[|7]|s

™
< —=s"||2']|2, by Sobolev inequality.

T V3
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Therefore x
(]
2]l < —=s™.

V3

Next, we claim that z(7) is bounded for some 7 € J and for all possible
solutions z. We may assume by (H) that there exists r(s*) > 0 such
that

(4) g(t,x) > s*, whenever |z| > r(s")

for all t € J. Mean value theorem for (3) provides that there exists
7 € J such that

(1= )le(m) + pyglr, 2(7)) = s.

This implies that s lies between |x(7)| and g(7, (7)), and thus we have
either

(5) lz(T)] <s or g(r,2(7)) < s.

We show that |z(7)| < r(s*) if g(7,2(7)) < s. Suppose |z(7)] > r(s*),
then by (4), g(7,2(7)) > s*. Thus

s <s*<g(r,z(r)) <s.
This contradiction shows that
(6) l2(7)] < r(s7).
By (5) and (6),

|z(7)] € max{s*,r(s")}.
Choosing R strictly greater than max{s*,r(s*)}, we get
|x(7)] < R.

Finally,

()] < J(7)] + | / 2!(s)ds|
< Je(r)| + 2x]1a’]l

22

V3
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< R+ s =M,
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for all t € J. Therefore
flelloo < M.

Since ||'||2 is bounded, it is not hard to show in (2#) that |||z is
bounded, say [[z" |2 < -‘gV for some constant V. Thus by the Sobolev
inequality, we obtain

oo < V-

3. Degree computations

We reduce problem (2#) to an equivalent operator form. Let us define
L:D(L)yc Cg,(J) — C°(J) by 2 — 2", where D(L) = C3,(J), and
for each p € 0,1}, N# : C},.(J) — C°(J) by

de() = (1= e + pfla( a0+ 9 2() — s
so that (2#) and (1) can be written
Lo+ NEa =0,
L+ Nlz =0
respectively. It is well-known that L is a Fredholm operator with index
0 and N¥ is L-compact on Q2 for any open bounded @ C C3,.. The

coincidence degree Dy (L + N# Q) is well-defined and constant in g if
L+ NE2)#0for p€[0,1], s € Rand 2 € D(L)N .

LEMMA 2. If (H) is satisfied, then for each s* > 0 and for each open
bounded set Q(s*) C C,,.(J) such that

Qs") O {e € Chl(I) : Jlelloe < M, [l2'llo < V),

one has

Dy(L+ N} ,Qs*)) =0 whenevers <s

Proof. Let s* be given and let (s*) be any subset of C}, containing
{z € CLJ) : ||z)lo <M, |J2'|lec < V}. Let s, = mintelJ1 g(t,z) (=0).
e

If (1,) has a 27-periodic solution 2, then
1 2T
0 < 3 / g(t,x(t))dt = s.
2T Jo
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This implies that (1,) has no 2x-periodic solution for s < s,. Thus by
the existence property of degree, we have

DL(L+ N, Q(s*) =0 fors < s,.

By a priori estimate and the homotopy invariance of degree, we have,
for fixed § < s,

Dr(L+ N}, Q(s") = Di(L + NI, Q(s*)) =0,

for all s < s*.

LEMMA 3. If (H) is satisfied, then there exists § > s, such that for
each s* > 3, one can find an open bounded set Q,(s*) in C3 _(J) for
which

IDL(L+ N;,(s*) =1,
for 5 < s < s*.

Proof. Let
5§ = xg(t,0
max ¢(t,0)
then 3 Z'ES’D. Let s* > 5 and let

(s ={reC(J): -M<a(t)<0, t€J, |z']|oc < V}

then ;(s*) C (s*) and since 2 € £;(s*) is negative, (2¥) is equivalent
to

2"(t) = (1= p)a(t) + pf(2(t))2'(t) + pglt, 2(t)) = s
on ;(s*). We show that Dy(L + N Q(s*)) 1s well-defined for 5 <
s < s* For 0 < p <1, let 2 be a 2r-periodic solution for (2¥) for
z € 9 (s*), then z(7) = 0 for some 7 € J. Since z(7) = max¢ y r(t),
z'(t) =0 and z"(r) < 0. Thus from (2#),

(7)) + pg(t,x(1)) =5

and
s < ug(t,0) <supg(t,0)=35 < s.
teld

276



Existence of periodic solutions for Liénard differential equations

This contradiction proves that the degree is well-defined for u € (0,1].
For pp = 0, 2"(t) — z(¢) = s has the only 27-periodic solution z(t) = —s.
Thus for s < s < s*, z € Q1(s*). By the normalization property and
homotopy invariance of degree, we get

1= [Dy(L -1 —s,Q(s"))
= IDL(L + N2 (s")
= |DL(L+ N} (s,

The following lemma is a parallel version of the main theorem under
condition (C).

LEMMA 4. If (H) and (C) are satisfied, then for s, = min, , g(t,2)
and 5§ = max; g(t,2,),
(i) (1,) has no 2w-periodic solution for s < s,,
(i1) (1,) has at least one 2x-periodic solution for s = s,
(iii) (1,) has at least two 2w-periodic solutions for s > 3.

Proof. (i) has been proved in Lemma 2. For (iii), if s > § then we
choose §)(s) D ©1(s), both of which are defined in Lemma 2 and Lemima
3 respectively, and by the additivity property of degree, we have

0=Dy(L+N},Qs)) =Dr(L+N} 0 (s)+Dr(L+NLQs)\ Qi (s5)).
Since |D(L + N!,§;(s))| = 1 by Lemma 3, we have
IDL(L+ Ny Qs)\ Q(s)) =1

and thus (1,) has one 27-periodic solution in £2(s) and another one in
Q(s)\ Q1(s). For (i), let (s, ) be a sequence in R such that s, — & and
let z,, be a 27-periodic solution for (15, ), then by « priori estimate, (2,,)
is bounded in C},(J) with norm ||2}jec + ||2'] 0o- Since z, is a solution
of (1,,) and f, g are continuous, (2} is bounded with the sup-norm so
that (z,) is bounded in CZ,(.J) with norm ||| 4|2 ||oo +1|2" ||oc. Since
C3, is compactly embedded in C1_, (2,,) has a subsequence converging
to z in Cj_(J). Writing equation (1,) in integral form, one can easily
show that the limit z is a solution of (15), and this completes the proof.
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We now prove the main theorem.

Proof of Theorem 1. Let g(t,,2,) = min; ; ¢(t,z) and let

)
f(x) = fla + 2o)
s=38—g(ts,2,).

Then
§(t,,0) =0 and g(t,x) >0,

for all t € J, £ € R and furthermore,

§(t,x) — oc uniformly in ¢, as |z]| — oc.
Hence the equation
(7s) 2+ fla)a’ + gt x) =3

satisfies hypotheses in Lemma 4 so that the conclusion (i) ~ (ii1) holds
for §, = min, ; §(¢,z) and § = max¢ g(t,z,) — g(ts, To). We notice that
3§ < §, and § > § are equivalent to s < s, = min; z ¢(t.z) and s > 5 =
max, g(t,z,) respectively. Let y be a 2x-periodic solution of (7;5) and
let z(¢) = y(t) + z,, then (7;) is equivalent to (1,). Consequently, (1,)
holds (i) ~ (iii) for s, = min¢,, ¢g(t,2) and § = max, g(¢,,) and the
proof is complete.

REMARK 1. The existence parameter s; in 1] satisfies that for each

(to,2,) € J x R with g(t,,v,) = min,, g(t, ),

ntling(t, )< s < max g(t,x,).
\r

Since z, may occur at infinitely many different places in a bounded
subset of J x R, we conclude

ntlin g(t,z) < sy <inf max g(t, z4).
r Lo

[l
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REMARK 2. If g(t,2) = g(2), then s, and § in Theorem 1 are the
same. Thus autonomous Liénard differential equation

(83) 2" + f(.’l?).'lfl + g(z) = s

satisfies that for s; = min; ¢g(z),

(i) (8s) has no 27-periodic solution for s < sy,
(ii) (8s) has at least one 27-periodic solution for s = sy,
(ii1) (8,) has at least two 27-periodic solutions for s > ;.

The result is the same as [1] and moreover, we give a sharp estimate of
s1 while [1] gives only the fact that s; > min, g(x).
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