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L?’-FIELDS PRESERVING THE RICCI FIELD

YANG JAE SHIN

1. Introduction

The following result is well-known ([1]) : Let (M, g) be a connected,
orientable and compact Riemannian manifold without boundary, and
let Ric be the Ricci tensor field on M. If a conformal (or, projective)
vector field Y on M satisfies ©(Y)Ric = 0, then Y is a Killing vector
field on M, where ©(Y') denotes the Lie differentiation with respect
to Y. We consider the case of that M is a complete non-compact
Riemannian manifold, and we have the following theorems :

THEOREM A. Let (M,g) be an n(> 2)-dimensional complete non-
compact Riemannian manifold. If an L?-conformal field Y with L?-
characteristic function satisfies ©(Y }Ric = 0, then Y is a Killing field.

THEOREM B. Let (M, g) be as Theorem A. If an L*- projective field
Y with an L?-characteristic form ¢ satisfies O(Y )Ric =0, then Y is a
Killing field.

We shall be in C®-category. The manifolds considered in this note
are connected and orlentable.

2. Preliminaries

Let M be a complete non-compact Riemannian manifold of dimen-
sion n. The metric tensor, the Riemannian connection and the Ricci
field of M are respectively denoted by ¢, V and Ric.
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DEFINITION. ([2],[3],[4],[6],(7]) If ¥ satisfies ©(Y)g = 2fg, where
f is a function on M, then Y is called a conformal field and f the
characteristic function of V. If ¥ satisfies @(Y)g = 0, then Y is called
a Killing field. If YV satisfies

(O(Y)V)xZ = §(X)Z + $(2)X

for any X,Z € T(TM), where ¢ is a 1-form on M and I'(TM) denotes
the sections of the tangent bundle TM of M, then Y is called a projec-
tive field and ¢ the characteristic form of Y. If ¥ satisfies ©(Y)V = 0,
then Y is called a affine field.

Let A°(M)}(s =0,1,2,--- ,n) be the space of all s-forms on M and
A3(M) be the subspace of A*(M) composed of forms with compact
supports. Let <<, >> be the global scalar product on A*(M). We
denote by L2(M) the completion of A$(M) with respect to << , >>
(cf. [5],[6],[7]). We notice that A°(M) denotes the space of all functions
on M.

DEFINITION. (cf. [5],[6],[7]) An element 5 € L2(M )NA*(M) is called
an L2- field of M.

We notice that a function f on M has finite LZ®>-norm if f € LZ(M)N
A°(M). The Laplacian A acting on A*(M) is defined by

A =o6d+ dé

(cf. [3]). We notice that the operator é is the adjoint operator of the
exterior derivative d with respect to the global scalar product <<, >>.

LEMMA 1. ([6]) Let M be a complete non-compact Riemannian
manifold. Every L*-affine field on M is a Killing field.

Let 0 be a point of M and fix it. We denote by p(z) the geodesic
distance from 0 to € 3. We set

B(k) = {z € M|p(z) < k}
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for any k > 0. There exists family {wx}r>¢ of Lipschitz continuous
functions on M satisfying the follows:

0 <wi(a) <1 for x € M,
suppwy C B(2F),
{wr(x)=1 for € B(k),
kllrrgcwk =1,
|dwi] < CE™! almost everywhere on M,

where C > 0 is a constant independent of k (cf. [1],[5],[6],[7]).
LEMMA 2. (cf. [1],[5],[6],[7]) For any n = A°(M), there exists a

positive constant A independent of k such that

- ‘ A T
[|dwr © 71”?3(21;) < ":3'|77||}.2(2k)~

where

1By =<< 17 >> (2 = / <ny>dS
B(2k)

and dS denotes the volume element of B(2k).

If  has finite L2-norm, then win € AJ(M) and win — y(k — +00)
in the strong sense.
We finally prepare the following theorem for later use.

LEMMA 3. ([1]) Let (M, g) be a complete non-compact Riemannian
manifold. Then
/ div(wrY)dS =10
B(2k)

for any Y € T(T M), where dS denotes the volume element of B(2k).

3. Proof of main theoreins

Using the lemmas in the previous section, we will prove the theorems
mentioned in the introduction
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THEOREM A. Let (M, g) be an n(> 2)-dimensional complete non-
compact Riemannian manifold. If an L*-conformal field Y with L2-
characteristic function satisfies @(Y )Ric = 0, then Y is a Killing field.

Proof. Let Y be an L?-conformal field of M with L2-characteristic
function f. Then it follows that
¢ (O(Y)Ric)(X;, Xi) = 2(n — 1)Af,

where {X;} denotes an orthonormal fields and g;; = g{ X, Xi), (gj:)~*
= (¢?*) ([cf. [2],[3],[4]). So we obtain directly Af = 0 by the assumption
O(Y)Ric=0and n > 2.
By means of Lemma 2 we can see that f is constant on M. In fact,
we have
0 =<< Af,wif >>peak
=<< wrdf,wrdf >>B(2k) +2 << wrdf, fdwi >>B(2k)
> |lwkdf | 5eary = 2llwrdfl B | fdwill B
3 4C*

> Slwrdfl|Bar) — Y3 “f”B("k)

Since f is an L?-function on M, we have df = 0 as k -+ 0o. Therefore
f is constant on M. Moreover, for any conformal field Y we have

div(wiY') = quif + ¢(Y, gradwy)

because of divY = nf. Thus we obtain

/ div(wr Y )dS
B(2k)

>nf | widS - 1Y ||gradwy|dS
B(2k) B(2k)

>nf wipdS — ¢ / [Y'|dS.
B(2k) k B(2k)

From Lemma 3, we get f <0 as k — oc.

Since 0 = [py5) div(WrY)dS < nf [ wkdS + T [paxy Y1dS, we
obtain f > 0 as k¥ — oco. And hence f vanishes identically. Thus Y is
a Killing field of M.

236



L%-fields preserving the Ricci field

THEOREM B. Let (M, g) be as Theorem A. If an L*?- projective field
Y with an L?-characteristic form ¢ satisfies (Y )Ric =0, then Y is a
Killing field.

Proof. For any projective field Y with characteristic form ¢, it fol-
lows that -
9" (O(Y)Ric)(X;), Xi) = (n - 1)8(¢)

(cf. [2],[3],[4]). Since n > 2 and ©(s)Ricp = 0, we have 8¢ = 0, which
together with d(divY) = (n + 1)¢ implies

1 1
0=¢6¢= od(divY) = ——=A(divY).
¢ =y odldw )= yAldw )
Since ¢ is an L*-form on M, divY is also an L2-function on M. If
we recall the fact in the process of the proof of Theorem A, then div)
is constant on M and consequently ¢ = 0, namely, Y is a affine field.

By means of Lemma 1, we see that Y is a Killing field of M.
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