L^2 -FIELDS PRESERVING THE RICCI FIELD

YANG JAE SHIN

1. Introduction

The following result is well-known ([1]): Let (M,g) be a connected, orientable and compact Riemannian manifold without boundary, and let Ric be the Ricci tensor field on M. If a conformal (or, projective) vector field Y on M satisfies $\Theta(Y)Ric = 0$, then Y is a Killing vector field on M, where $\Theta(Y)$ denotes the Lie differentiation with respect to Y. We consider the case of that M is a complete non-compact Riemannian manifold, and we have the following theorems:

THEOREM A. Let (M,g) be an $n(\geq 2)$ -dimensional complete non-compact Riemannian manifold. If an L^2 -conformal field Y with L^2 -characteristic function satisfies $\Theta(Y)Ric=0$, then Y is a Killing field.

THEOREM B. Let (M, g) be as Theorem A. If an L^2 -projective field Y with an L^2 -characteristic form ϕ satisfies $\Theta(Y)Ric = 0$, then Y is a Killing field.

We shall be in C^{∞} -category. The manifolds considered in this note are connected and orientable.

2. Preliminaries

Let M be a complete non-compact Riemannian manifold of dimension n. The metric tensor, the Riemannian connection and the Ricci field of M are respectively denoted by g, ∇ and Ric.

Received January 28, 1993.

This Paper is supported by the Research Foundation of Kyungnam University 1993.

Yang Jae Shin

DEFINITION. ([2],[3],[4],[6],[7]) If Y satisfies $\Theta(Y)g = 2fg$, where f is a function on M, then Y is called a conformal field and f the characteristic function of Y. If Y satisfies $\Theta(Y)g = 0$, then Y is called a Killing field. If Y satisfies

$$(\Theta(Y)\nabla)_X Z = \phi(X)Z + \phi(Z)X$$

for any $X, Z \in \Gamma(TM)$, where ϕ is a 1-form on M and $\Gamma(TM)$ denotes the sections of the tangent bundle TM of M, then Y is called a projective field and ϕ the characteristic form of Y. If Y satisfies $\Theta(Y)\nabla = 0$, then Y is called a affine field.

Let $\Lambda^s(M)(s=0,1,2,\cdots,n)$ be the space of all s-forms on M and $\Lambda^s_0(M)$ be the subspace of $\Lambda^s(M)$ composed of forms with compact supports. Let <<, >> be the global scalar product on $\Lambda^s(M)$. We denote by $L^2_s(M)$ the completion of $\Lambda^s_0(M)$ with respect to <<, >> (cf. [5],[6],[7]). We notice that $\Lambda^0(M)$ denotes the space of all functions on M.

DEFINITION. (cf. [5],[6],[7]) An element $\eta \in L^2_s(M) \cap \Lambda^s(M)$ is called an L^2 - field of M.

We notice that a function f on M has finite L^2 -norm if $f \in L^2_0(M) \cap \Lambda^0(M)$. The Laplacian Δ acting on $\Lambda^s(M)$ is defined by

$$\Delta = \delta d + d\delta$$

(cf. [3]). We notice that the operator δ is the adjoint operator of the exterior derivative d with respect to the global scalar product <<, >>.

LEMMA 1. ([6]) Let M be a complete non-compact Riemannian manifold. Every L^2 -affine field on M is a Killing field.

Let 0 be a point of M and fix it. We denote by $\rho(x)$ the geodesic distance from 0 to $x \in M$. We set

$$B(k) = \{x \in M | \rho(x) < k\}$$

for any k > 0. There exists family $\{\omega_k\}_{k>0}$ of Lipschitz continuous functions on M satisfying the follows:

$$\begin{cases} 0 \leq \omega_k(x) \leq 1 & \text{for } x \in M, \\ supp \omega_k \subset B(2k), \\ \omega_k(x) = 1 & \text{for } x \in B(k), \\ \lim_{k \to \infty} \omega_k = 1, \\ |d\omega_k| \leq Ck^{-1} & \text{almost everywhere on } M, \end{cases}$$

where C > 0 is a constant independent of k (cf. [1],[5],[6],[7]).

LEMMA 2. (cf. [1],[5],[6],[7]) For any $\eta \in \Lambda^s(M)$, there exists a positive constant A independent of k such that

$$||d\omega_k \otimes \eta||_{B(2k)}^2 \le \frac{A}{k^2} ||\eta||_{B(2k)}^2,$$

where

$$||\eta||_{B(2k)}^2 = <<\eta,\eta>>_{B(2k)} = \int_{B(2k)} <\eta,\eta>dS$$

and dS denotes the volume element of B(2k).

If η has finite L^2 -norm, then $\omega_k \eta \in \Lambda_0^*(M)$ and $\omega_k \eta \to \eta(k \to +\infty)$ in the strong sense.

We finally prepare the following theorem for later use.

LEMMA 3. ([1]) Let (M, g) be a complete non-compact Riemannian manifold. Then

$$\int_{B(2k)} div(\omega_k Y) dS = 0$$

for any $Y \in \Gamma(TM)$, where dS denotes the volume element of B(2k).

3. Proof of main theorems

Using the lemmas in the previous section, we will prove the theorems mentioned in the introduction

THEOREM A. Let (M,g) be an $n(\geq 2)$ -dimensional complete non-compact Riemannian manifold. If an L^2 -conformal field Y with L^2 -characteristic function satisfies $\Theta(Y)Ric=0$, then Y is a Killing field.

Proof. Let Y be an L^2 -conformal field of M with L^2 -characteristic function f. Then it follows that

$$g^{ji}(\Theta(Y)Ric)(X_j, X_i) = 2(n-1)\Delta f,$$

where $\{X_i\}$ denotes an orthonormal fields and $g_{ji} = g(X_j, X_i), (g_{ji})^{-1}$ = (g^{ji}) ([cf. [2],[3],[4]). So we obtain directly $\Delta f = 0$ by the assumption $\Theta(Y)Ric = 0$ and $n \geq 2$.

By means of Lemma 2 we can see that f is constant on M. In fact, we have

$$0 = << \Delta f, \omega_k^2 f >>_{B(2k)}$$

$$= << \omega_k df, \omega_k df >>_{B(2k)} + 2 << \omega_k df, f d\omega_k >>_{B(2k)}$$

$$\geq \|\omega_k df\|_{B(2k)}^2 - 2\|\omega_k df\|_{B(2k)} \|f d\omega_k\|_{B(2k)}$$

$$\geq \frac{3}{4} \|\omega_k df\|_{B(2k)}^2 - \frac{4C^2}{k^2} \|f\|_{B(2k)}^2.$$

Since f is an L^2 -function on M, we have df = 0 as $k \to \infty$. Therefore f is constant on M. Moreover, for any conformal field Y we have

$$div(\omega_k Y) = q\omega_k f + g(Y, grad\omega_k)$$

because of divY = nf. Thus we obtain

$$\begin{split} &\int_{B(2k)} div(\omega_k Y) dS \\ &\geq nf \int_{B(2k)} \omega_k dS - \int_{B(2k)} |Y| |grad\omega_k| dS \\ &\geq nf \int_{B(2k)} \omega_k dS - \frac{C}{k} \int_{B(2k)} |Y| dS. \end{split}$$

From Lemma 3, we get $f \leq 0$ as $k \to \infty$.

Since $0 = \int_{B(2k)} div(\omega_k Y) dS \le nf \int_{B(2k)} \omega_k dS + \frac{C}{k} \int_{B(2k)} |Y| dS$, we obtain $f \ge 0$ as $k \to \infty$. And hence f vanishes identically. Thus Y is a Killing field of M.

THEOREM B. Let (M,g) be as Theorem A. If an L^2 -projective field Y with an L^2 -characteristic form ϕ satisfies $\Theta(Y)Ric=0$, then Y is a Killing field.

Proof. For any projective field Y with characteristic form ϕ , it follows that

$$g^{ji}(\Theta(Y)Ric)(X_j), X_i) = (n-1)\delta(\phi)$$

(cf. [2],[3],[4]). Since $n \geq 2$ and $\Theta(s)Ric_D = 0$, we have $\delta \phi = 0$, which together with $d(divY) = (n+1)\phi$ implies

$$0 = \delta \phi = \frac{1}{n+1} \delta d(divY) = \frac{1}{n+1} \Delta (divY).$$

Since ϕ is an L^2 -form on M, divY is also an L^2 -function on M. If we recall the fact in the process of the proof of Theorem A, then divY is constant on M and consequently $\phi = 0$, namely, Y is a affine field. By means of Lemma 1, we see that Y is a Killing field of M.

References

- 1. J. Dodziuk, Vanishing theorems for square-integrable harmonic forms, Springer-Verlag, New York (1981), 21-27.
- S. Ishihara, Groups of projective transformations and groups of conformal transformations, J. Math. Soc. Japan 9 (1957), 195-221.
- A. Lichnerowicz, Geometry of groups of transformations, Noordhoff Intl. Publ., Nethelands, 1977.
- K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker INC., New York, 1970.
- 5. S. Yorozu, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc. 84 (1982), 115-120.
- 6. S. Yorozu, Affine and projective vector fields on complete non-compact Riemannian manifolds, Yokohama Math. J. 31 (1983), 41-46.
- S. Yorozu, Conformal and Killing vector fields on complete non-compact Riemannian manifolds, Geometry of geodesics and related topics, Advanced Studies in Pure Math. 3 (1984), 459-472.

DEPARTMENT OF MATHEMATICS EDUCATION, KYUNGNAM UNIVERSITY, MASAN 631-701, KOREA