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A CHARACTERIZATION OF
PROJECTIVE GEOMETRIES

YOUNG-JIN YOON

1. Introduction

The most fundamental examples of (combinatorial) geometries are
projective geometries PG(n—1, q) of dimension n—1, representable over
GF(q), where g is a prime power. Every upper interval of a projective
geometry is a projective geometry. The Whitney numbers of the second
kind are the Gaussian coefficients. Every flat of a projective geometry
is modular, so the projective geometry is supersolvable in the sense of
Stanley [6].

The characteristic polynomial p(G, A) of a geometry G of rank n is
defined by

p(G A= > (0@

a€ L{G)

where L(G) is the lattice of flats of G and y is the Mdbius function of
L(G).

In this paper, we give a characterization of projective geometries in
terms of their characteristic polynomials and some other conditions.

Our notation and terminology follow those in {7,8]. To clarify our
terminology, let G be a finite geometric lattice. If S is the set of points
(or rank-one flats) in G, the lattice structure of G induces the structure
of a (combinatorial) geometry, also denoted by G, on S. The size |G|
of the geometry G is the number of points in G. Let T be a subset
of S. The deletion of T from G is the geometry on the point set S\T
obtained by restricting G to the subset S\T. The contraction G/T of
G by T is the geometry induced by the geometric lattice [cl(T), 1] on
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the set S” of all flats in G covering c/(T). (Here, cI(T) is the closure
of T, and 1 is the maximum of the lattice G.) Thus, by definition, the
contraction of a geometry is always a geometry. A geometry which can
be obtained from G by deletions or contractions is called a minor of G.

2. Preliminaries

A geometry G is said to be upper homogeneous if for k = 1,2,...,
r(G),G/z = G [y for every pairs z,y of flats of rank k. Kahn and Kung
(4] defined splitting in geometries. A geometry G splits if G is the union
of two of its proper flats. And G is said to be non-splitting otherwise.

LEMMA 2.1. [9] If a geometry G is upper homogeneous, has a mod-
ular copoint, and [G| > r(G), then G is non-splitting.

LEMMA 2.2. Let G be an upper homogeneous geometry having a
modular copoint. Then G is supersolvable. Let § < t1 < 29 < - <
Tn—1 < Tn = G be a maximal chain of modular flats of G. Let a; be the
number of points in z; but not in x;_; for each ¢« = 2,3,...,n. Then
we have a; < a;41 foreachi=1,2,...,n— 1.

Proof. Let n be the rank of G and let 2,_; be a modular copoint
of G. Then [0,2,-1] = G/a for a point a not in z,—;. Since G is
upper homogeneous, it follows that [0, z,-1] = G/b for a point b in
Zpo1. Thus z,_; is upper homogeneous and has a modular copoint
Ty_g of z,,_7 such that [ﬁ, Tp-2] = x,-1/b. It follows that z,_, is
a modular coline of G. By repeating the same arguments, we have a
maximal chain § < ;7 < 22 < -+ < 2,1 < G of modular flats in
G. Thus G is supersolvable. Let a be a point in z; but not in z;_;
for some 1. Since z,41/a = [0,2;] and z;/a = [0, z;_1}, it implies that
a; = |zi| — |ric1] < |2igy1] = |2is1/al = |2iz1] — 2] = aiyy. Thus
a; < ai4y foreach:=1,2,...,n—1.

A geometry is modular if all of its flats are modular. The following
propositions give characterizations of modular geometries.

PROPOSITION 2.3. [1] A geometry is modular if and only if it is the
direct sum of projective geometries or points.

216



A characterization of projective geometries

PROPOSITION 2.4. [3] A geometry G is modular if and only if the
number of points in G is the same as the number of copoints in G.

The Whitney numbers of a geometry G of rank n are defined by

w(n,s) = Z ﬂ(ﬁ,fif),

r(z)=n—3s

the coefficient of A* in the characteristic polynomial ; and

r(z)=n-—s
the number of flats of rank n — s. The most well-known examples are

the following (See Dowling[2, p.75]) :
(1) If G = B, the Boolean algebra of rank 7, then

w(n,s) = (-1)""° (2) and Win,s) = (Z)

(2) If G = PG(n —1,q), then

w(n,s) = (~1)"_3q(";$‘) (Z) and Wi(n,s)= (n) ,
q g

S

n . . .
where ( ) is the Gaussian coefficient,
s
g

<

(n) =1 (g -
. (¢*—1)...(¢=-1)

Each of these examples are classes of geometries which satisfy the
hypotheses of the following theorem due to Dowling.

THEOREM 2.5. [2] Let {G, : n =1,2,...} be a class of geometries
such that G, is of rank n, and, for all flats z in G,, of rank n — s
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(0 < s < n), the interval [z, 1] is isomorphic to G,. Let w(n,s), W(n,s)
be the Whitney numbers of G,,. Then

Z W(n,s)w(s,t) = é(n,t),

Z w(n,s)Wi(s,t) = é(n,t),

s

and the numbers w(n, s), W(n, s) satisfy the inverse relations

a, = ZW(n,s)bs, b, = Zw(n,s)a,.

8

3. Main Theorem

THEOREM 3.1. Let ¢ be a power of prime. If a geometry G is upper
homogeneous, has a modular copoint, and p(G; A} = (A—=1) (A—¢g)(A —
¢®)...(A—¢q™ 1), then G = PG(n —1,4q).

Proof. By Lemma 2.2, G is supersolvable. Let § < 2; < x5 < ...
< Zn-1 < G be a maximal chain of modular flats of G. Let a; be the
number of points in z; but not in z;_; for 7 = 2,3,...,n. Then the
modular factorization theorem [5] implies that p(G; ) = (A — 1)}(A —
az2)(A—as)...(A—ay). By Lemma 2.2, we have a; < «;4 for each : =
1,2,...,n — 1. Thus we can conclude that a; = ¢'~! for¢ = 2,3,...,n.

We prove this theorem by induction on n. For n = 1 and n = 2,
the theorem is true. Assume it holds for a geometry of rank less than
n. Let a be a point in G. Then G/a is upper homogeneous and has
a modular copoint and p(G/a;A) = p(an_1;A) = (A~ 1) (A= ¢)(A =
¢*)...(A—¢""%). By the induction hypothesis, G/a = PG(n —2,¢) for
every point a in G.

Since projective geometries are modular, Proposition 2.4 implies that
W(s,1) is the same as the number of points in PG(s — 1,¢). Thus

s -1 ]
Wi(s,1) = 4 T = (;) for s =1,2,...,n— 1. By Theorem 2.5, we
4= q

have

> w(n, s)W(s,t) = 8(n,1).

a
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Let t =1 and n > 1. Then we have

n—1

W(n,1) == w(n,s)W(s,1)
s=1
n—1
~ Y (1yregE) (”
3=0 s
= — Z(_l‘)n—sq(";‘ <77
s=0 s

=W(n,n-1).

N’ N
-
TN
—
N—”’
)

Thus Proposition 2.4 implies that G is modular. Also Lemma 2.1
implies that G is non-splitting and so G is connected. Since G is a
connected modular geometry, by Proposition 2.3, we can conclude that
G is isomorphic to a projective geometry. Therefore G = PG(n —1,¢).
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