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NEAR DUNFORD-PETTIS OPERATORS AND NRNP

Young Kuk KiM

1. Preliminaries

Throughout this paper X is a Banach space and p is the Lebesgue
measure on [0,1] and all operators are assumed to be bounded and
linear. L'(y) is the Banach space of all (classes of ) Lebesgue integrable
functions on [0,1] with its usual norm. Let T : L'(g) — X be an
operator. Then

(a)T is called representable if there exist ¢ : [0,1] = X, ||g|loc < o©
such that Tf = [ fgdu for all f € L'(y).

(b) T is a Dunford-Pettis operator if T maps weakly compact sets
into norm compact sets.

(¢) T is nearly representable if T'- D : L'(u) — X is Bochner rep-
resentable for every Dunford-Pettis operator D : L'(p) — L'(p). Tt 1s
well known [1] that each bounded linear operator T : L'(x) — X can
be asssociated with a martingale (£,,). The correspondence is

T(L) = limy oo /.’;’n(t)u-(z‘)dt

and

& = XEen,

where II,, is nth dyadic partion of [0,1], i.e.,

k—1 &
Hn - {In,k | In,k = |: )wl" - 172a31" ' ’271 - 1} UI”.2"7

on "E):_l:

6)71__1

<

n=012,.., and I, = [ =

,1}. Also Bourgain showed the
following fact on Dunford-Pettis operators and associated martingale.
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Fact 1.1. (a) A uniformly bounded X-valued martingale is Pettis-
Cauchy iff the corresponding operator is Dunford-Pettis.

(b) The martingale (£,) is Pettis-Cauchy iff limyu .|| [ €ata]] = 0,
whenever (5} is an L*-bounded weakly null sequence in Lt

Notations and symbols are standard and not appeared here can be
seen in [2] and [3].

2. Near Dunford-Pettis operators and NRNP

The following fact was proved by Petrakis {5, P.27].

Fact 2.1. Let T : L'Y(u) — X be any Dunford-Pettis operator.
Then there is a non representable operator S : L'(u) — L'(u) such
thatT - S is a representable operator.

Since every representable operator i1s Dunford-Pettis operator, it 1s
natural to ask if there exist non Dunford-Pettis operator which satisfies
the Fact 2.1. The next theorem is a partial answer to this question.

THEOREM 2.2. Let T : L*(p) — X be nearly representable. Then
there exists a non Dunford-Pettis operator S : L'(p) — L'(u) such
that T-S: L'(p) — X is representable.

Proof. Let By: be the unit ball of L!(x). Then we may assume

3 . .

that 5 T(Bp1) € W, where W is an open ball of X. Since every
nearly representable operator is Dunford-Pettis, as Petrakis showed,
there exist a tree (¢, %),1 < k < 2" n = 0,1,2,.... of functions in
Lo[0,1] and a system (Byx).1 < & < 2% n =0,1,2,.... of open balls
of X such that

(1) 1 S“ d’n.k “1S 2, for 1 < k < 2"9” = 01 1729' o

(2) ” ‘¢’n+1,2k—1 - ’l/)n'{-l,?k ”12 % for 1 S k S 2’11'” = 01 1523' o

(3) Bu.x has center at T(yf’,,,k)_a.nd radius rp, ; at most 27"

(4) Bn,k Q W for all 7'1,]\7 and Bn+l,2k~] U Bn+1,21. g_ Bn,k

To construct the above tree and system, p, : [0,1] — {—1,1} was

2 (241
E————-Ji——)) and pu(w) = -1 ifw €

5?’ In

defined as pp(w) = 1 ifw €
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(2k+1) 2(k+1)
2n 7 2m ;
this (pn) is L -bounded weakly null sequence in L!(x). And ¢,k

), for k = 0,1,2,---,2""1 —1, or w = 1. Then

3 | | 1
was defined as 0,1 = S X[0,1], ¥nt1,20-1 = ¥a k(14 §le) andyn412k =

1
Ya,k(1 — =nx), where () is a sequence of suitable functions in the

sequence (p, ). Then

2"
IS =04 ] 2 2,
k=1

2'"
forn =1,2,3,--- Put £,(8)(s) = 27" > hpw(t)¢ux(s), where hy i =
k=1

. . . 1
2"X 1, s then (&) is a L'-valued martingale associated to the -3—~—trec

(¢¥n,k). And (&,) is not convergent. Moreover we will show that'(f n) 18
not Pettis-Cauchy. For this calculate || f{,,pnm, then

I'/fnpn.
= [ tns [ putnatfaty =27 [ |50,
k=1 In k=1

k
This means that limp—o| [ €npnll # 0. Hence by the Fact 1.1 (b),
(€n) is not Pettis-Cauchy. -Again by the Fact 1.1 (a), the operator
S LY(p) — L'(u) which is associated to this martingale (£, ) is not a
Dunford-Pettis operator. But the martingale 7(£,,), which is associated
with T - S, converges as we can see in [5]. Tlhus T - S is representable
and completes the proof.

an

/ / Xl,,vkurvn,kp"(t)dt
1

k=

d(p)

1
dp) > =,
(u)_.2

Whenever a Banach space X and a nearlv representable operator
N : LY(pu) = X are given, the Theorem 2.2 enables us to think of a
new set of operators in B(L'(;1)), the set of «ll bounded linear opera-
tors from L'(y) into L(p). We will call such operators near Dunford-
Pettis operators with respect to X and N, and will denote them as
NDP(N,X) operators. i.e.,

NDP(N,X)={T € B(L'(p)) | N - T : L'(pu) — Xisrepresentable)}
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REMARK 2.3. For every Banach space X and nearly representable
operator N : L'(u) — X, NDP(N,X) contains all Dunford-Pettis
operators in B(L'(u)). Moreover as we can see in Theorem 2.2, the
set NDP(N,X) is strictly larger than the set of all Dunford-Pettis
operators in B(L'(y)). And as shown in [4] the Volterra operator V :
L'(u) — C[0,1] is not representable. Hence the identity operator I
in B(L'(y)) is not a NDP(V,C[0,1]). Recently Kaufman, Petrakis,
Riddle and Uhl introduced a new concept to characterize a Banach
space which is called near Radon-Nikodym property spacel4].

DEFINITION 2.4. A Banach space X is said to have the near Radon-
Nikodym property (NRNP) iff every nearly representable operator N :
LY(y) — X is representable.

The following theorem states a relation between NDP(N,X) and
NRNP of X.

THEOREM 2.5. Let X be a Banach space. Then X has the NRNP
iff B(L'(u)) = NDP(N, X) for every nearly representable operatorN :
L'(p) — X.

Proof. Let T € B(L'(u)) and N : L'(p) — X be any nearly repre-
sentable operator. Then N -T : L'(u) — X is also nearly representable
[5]. Hence N - T is representable. i.e., T € NDP(N,X). For the con-
verse, let N : L'(u) — X be a nearly representable operator. Then
since I : L'(u) — L'(u) is NDP(N,X) operator, N == N - I is repre-
sentable. Thus X has NRNP.
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