A PROPERTY OF CERTAIN ANALYTIC FUNCTIONS

SHIGEYOSHI OWA AND JINSOOK KANG

1. Introduction

Let N be the class of functions of the form

(1.1)
$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots$$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$. If $p(z) \in N$ satisfies Rep(z) > 0 $(z \in U)$, then p(z) is called a Carathéodory function (cf. Goodman [2]).

Let A denote the class of functions of the form

(1.2)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

A function $f(z) \in A$ is said to be a member of S_k^* if it satisfies

(1.3)
$$\operatorname{Re}\left\{\left(\frac{zf'(z)}{f(z)}\right)^k\right\} > 0 \qquad (z \in \operatorname{U})$$

for some k > 0. A function f(z) in S_1^* is said to be starlike in U. A function $f(z) \in A$ is said to be a member of the class T_k if it satisfies

(1.4)
$$\operatorname{Re}\left\{\left(\frac{f(z)}{z}\right)^{k}\right\} > 0 \qquad (z \in \mathbf{U})$$

for some k > 0. Further, let R_k be the subclass of A consisting of functions f(z) which satisfy

(1.5n)
$$\operatorname{Re}\left\{\left(f'(z)\right)^{k}\right\} > 0 \qquad (z \in \mathbf{U})$$

for some k > 0. A function f(z) in R_1 is said to be close-to-convex in U (cf. Duren[1]).

For $p(z) \in \mathbb{N}$, Nunokawa [5] has shown that

Received December 31, 1993.

1991 AMS Subject Classification: 30C45.

Key words: Carathéodory function.

THEOREM A. If $p(z) \in \mathbb{N}$ satisfies

(1.6)
$$\left| \operatorname{Im} \frac{zp'(z)}{p(z)} \right| < 1 \qquad (z \in \mathbf{U})$$

then $Rep(z) > 0 \ (z \in U)$.

2. Main Result

To derive our main result, we have to recall here the following lemma due to Nunokawa [5].

LEMMA. Let p(z) be in the class N. If there exist a point z_0 in U such that Rep(z) > 0 $(|z| < |z_0|)$, $Rep(z_0) = 0$ and $p(z_0) \neq 0$, then

$$p(z_0) = ia \quad (a \neq 0)$$

and

$$\frac{z_0 p'(z_0)}{p(z_0)} = i \frac{k}{2} \left(a + \frac{1}{a} \right),$$

where k is real and $k \geq 1$.

REMARK. The above lemma is the generalization of Jack's lemma by Jack [3] (also, by Miller and Mocanu [4]).

Applying the above lemma, we have

THEOREM. If $p(z) \in \mathbb{N}$ satisfies

(2.1)
$$\frac{zp'(z)}{p(z)} \neq i\alpha \qquad (z \in \mathbf{U}),$$

then $\operatorname{Rep}(z) > 0$ $(z \in U)$, where α is real and $|\alpha| \ge 1$.

Proof. Suppose that the function p(z) has a zero of order n at a point $z = \beta$. Then we can write

(2.2)
$$p(z) = (z - \beta)^n q(z),$$

where q(z) is analytic in U and $q(\beta) \neq 0$. It follows from (2.2) that

(2.3)
$$\frac{zp'(z)}{p(z)} = \frac{nz}{z-\beta} + \frac{zq'(z)}{q(z)}.$$

The imaginary part of the right-hand side of (2.3) can take any values when z tends to β . This contradicts our condition (2.1). Therefore, we have $p(z) \neq 0$ for all $z \in U$.

Next, if there exists a point $z_0 \in U$ such that $Rep(z) > 0 \quad (|z| < |z_0|)$, $Rep(z_0) = 0$, and $p(z_0) \neq 0$, then Lemma leads us to $p(z_0) = ia \quad (a \neq 0)$ and

(2.4)
$$\frac{z_0 p'(z_0)}{p(z_0)} = i \frac{k}{2} \left(a + \frac{1}{a} \right) \quad (k \ge 1).$$

If a > 0, then

(2.5)
$$\operatorname{Im} \frac{z_0 p'(z_0)}{p(z_0)} = \frac{k}{2} \left(a + \frac{1}{a} \right) \ge 1,$$

and if a < 0, then

(2.6)
$$\operatorname{Im} \frac{z_0 p'(z_0)}{p(z_0)} = -\frac{k}{2} \left(|a| + \frac{1}{|a|} \right) \le -1.$$

This shows that

(2.7)
$$\frac{z_0 p'(z_0)}{p(z_0)} = i\alpha \quad (|\alpha| \ge 1).$$

We note that (2.7) contradicts our condition (2.1). Thus we conclude that Rep(z) > 0 for all $z \in U$.

REMARK. It is easy to see that Theorem is an improvement of Theorem A by Nunokawa [5]

Letting $p(z) = (zf'(z)/f(z))^k$ in Theorem, we have

COROLLARY 1. If $f(z) \in A$ satisfies

(2.8)
$$\frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \neq -1 + i\alpha \qquad (z \in \mathbf{U}),$$

then $f(z) \in S_k^*$, where α is real and $|\alpha| \ge k > 0$.

Making $p(z) = (f(z)/z)^k$ in Theorem, we have

COROLLARY 2. If $f(z) \in A$ satisfies

(2.9)
$$\frac{zf'(z)}{f(z)} \neq 1 + i\alpha \qquad (z \in \mathbf{U}),$$

then $f(z) \in T_k$, where α is real and $|\alpha| \ge k > 0$.

Finally, taking $p(z) = (f'(z))^k$ in Theorem, we have

COROLLARY 3. If $f(z) \in A$ satisfies

(2.10)
$$\frac{zf''(z)}{f'(z)} \neq i\alpha \quad (z \in \mathbf{U}),$$

then $f(z) \in \mathbb{R}_k$, where α is real and $|\alpha| \geq k > 0$.

ACKNOWLEDGEMENTS. This work of the authors was supported, in part, by the Japanese Ministry of Education, Science ane Culture under Grant-in-Aid for General Scientific Research.

References

- 1. P. L. Duren, Univalent Functions, Springer-Verlag (1983).
- 2. A. W. Goodman., Univalent Functions Vol.I, Mariner Publ., Tampa (1983).
- I. S. Jack, Functions Starlike and Convex of Order α, J. London Math. Soc. 3 (1971), 469-471.
- S. S. Miller and P. T. Mocanu, Second Order Differential Inequalities in the Complex Plane, J. Math. Anal. Appl. 65 (1978), 289-305.
- M. Nunokawa, On Properties of Non-Carathéodery Functions, Proc. Japan Acad. 68 (1992), 152-153.

SHIGEYOSHI OWA

DEPARTMENT OF MATHEMATICS, KINKI UNIVERSITY, HIGASHI-OSAKA, OSAKA 577, JAPAN

JINSOOK KANG

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, KOREA