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SOME DECOMPOSITION OF MODULAR
sps(F)-MODULES USING DIMENSION FORMULA

Y. K. KM, G. S. SEO AND S. Y. WoN

1. Introduction

Simple Lie algebras over algebraically closed field with characteristic
p > 7 were classified by H. Strade and R.L. Wilson in 1991 [7]. All
modular representations of simple Lie algebras, however, are not classi-
fied although some restricted modular representations have been done
earlier by Curtis and Steinberg. In connection with this, we would like
to decompose basic sps(F)-modules sly(F) and gly(F) over nonzero
characteristic by way of characteristic zero case.

The format of this paper runs as follows : Preliminary results and
notations are introduced in §2. Dimensions of ordinary sps(F) irre-
ducible modules are obtained in §3 followed by ordinary decomposition
of sps( F')-modules sly(F') and ¢l4(F) in §4. Finally modular decompo-
sition of sp4( F')-modules in §5 and some facts about modular irreducible
sps(F')-modules in §6 finish this paper. Special thanks are due to H.
Strade for his helpful suggestion.

2. Preliminaries

The Lie algebras of type C; are none other than symplectic Lie al-
gebras which are constructed on even dimensional vector spaces, the
vector space being considered over an algebraically closed field F of
characteristic zero. Since spz(F) = sl2(F), the irreducible spy(F)-
modules are nothing but sl,(F)- irreducible modules [5]. So their di-
mensions are easily recognized. Next, there arises a natural question
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what the dimensions of sps(F')- irreducible modules are. This may be
solved through the dimension formula {1].

Let the dimension of V(\) for A € A" be denoted by deg(A), where
A" denotes the set of dominant integral linear functions. Since V() is
a direct sumn of weight spaces, we see that

deg(A) = Z ma(p)

pET(A)
where mx(u) = dim V(A), for an integral linear function € H*. By
virtue of this and Weyl’s formula, we obtain
PROPOSITION 2.1. For A € A, we obtain

deg(3) = [J (A +6,0)/ [] (6, @)

a0 a>0
where § = 1 Y~ 3 and B ranges over all positive roots.
B8~0

Proof. See Chap. VI [1] for notations and proof. O

3. Dimensions of spy(F)-irreducible modules

Let hy := diag(1,1,—1,-1), hy := diag(1,-1,-1,1)and H = Fhy @
Fhs,. Since H becomes a Cartan subalgebra of sps(F'), we have a Cartan
decomposition

L=Ho [] Laui
(i3)

where (7,7) # (0,0) runs over { —2,0,2}* and a(z, ) denotes the roots
for the elementary basis elements of spy(F), 1. e.,

hi, ha, 21 = Ey3, v2 = Egy, v3 = E14 + Ea3, @4 = E12 — Eg3

and their transposes. Explicitly a(é,7) denotes the linear form o sat-
isfying a{h1) = i, a{h2) = j and E;; indicates an elementary matrix
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whose (z,7)-th component is 1 with all others zero. There is a root
system @ consisting of 8 roots

a(2,2), a(-2,-2), a(2,-2). a(-2,2),

a(2,0), a(-2,0), «(0,2), a(0,-2).
Select a basis A of ® as A = {«(2,2),a(0,--2)}. Put a; := a0, -2)
and a2 := a(2,2). Let the fundamental dominant weights be { A1, A2 }

relative to A. Then A\ = a; + 27 'aq, and Ay = a1 + 3.
Now recall

deg(N\) = [[ (A +6,a)/ J] (6. @)

a0 ax0
= [T +o.a)/ [[(0.0)
a0 a0

for A = myA; + maA;y with integers m; > 0 and for § = 27! Y « =
a0

>_ Ai. Here <:E,y> = 2(x,y)/(y,y) as usual. Also recall (3, a) =r —¢q
for B —ra, - 0+ qa which is a a-string through 3.

In this case 6 = Yday + 3cy>) So we have (6,201 + a2) = 2,
(6, a1 + a2) = 3, (6, a,) =1 for s = 1,2. Hence we obtain

H(é,a) = (6,01 )(0, 2) (b, a1 + a2)(d 20 + ap)

a>0

[[r+6.0) = H{)\o a)}

a>0 a>
= (mq + 1)} (m2 + 1)(mq + 2r2 + 3)(my + ma + 2).

So we have
deg(A) = (my1 + 1)(ma2 + 1)y + 2ma + 3)(m1 + m2 + 2)/6.

Incidentally, the trivial module F corresponds to A = 0A; + 0A; = 0
and sps(F') corresponds to A = 2\; + A2. Hence we have proved.
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PROPOSITION 3.1. For A € At and for a choice base A as above,
we have

deg(A) = (m1 + 1)(m3 + 1)(my1 + 2m2 + 3)(my + m2 + 2)/6.

4. Ordinary decomposition of some sps(F)-modules

For an algebraically closed field F of characteristic zero, we may de-
compose sps(F)-modules sly(F) and gly(F') by virtue of weight space
decomposition method. We have seen the various dimensions of irre-
ducible sp4( F)-modules over F in the preceding section. Now we shall
identify the decomposition of sly( F') and ¢gl4(F') in view of this.

Put hj := diag(1,~1,1,—1), wy := E14 — Ep3 and w2 := E1z + Es.
Then we may see easily that V = sly(F) is 15-dimensional and has a
basis

{ k1, ha, h3, 1, 22, ¥3, T4, W1, w2, transposes of x;, transposes of w; }
withz=1,2,3 and j =1,2.

We may also see easily that these basis elements of V' have weights
with respect to { h1, he } as follows :

21 has a weight a(2,2), ‘21 has a weight a(—2,

T2 has a weight «(2, -2), ‘zy has a weight a(— )
z3 has a weight «(2,0), '23 has a weight a(— 2,0)
x4 has a weight a(0,2), 24 has a weight a(0, —2)

wy has a weight «(2,0), ‘01 has a weight o(—2,0)
wy has a weight (0,2), 0z has a weight «(0,—2)

Note that { hj,hz2,hs } has a weight «(0,0), where a(z,j) denotes a
linear form such that a(hi) = ¢ and a(hz) = j. The sps(F)-module
V = sl4(F) has a weight space decomposition as

V=Wo H Vatiog
(1,7)50
(i.5)€{-2,0,2}?

= Vo & Va2.2) P Vag—2.-2) B Va(z,—2) ® Va(-2.2)
& Va0 & Var=2,0) ® Varo.2) @ Va(o,-2)s
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where dim Va2, _2) = dim Vy(_32) = 1 and dim V(2 9) = dim Va(-2.0)
= dim V4(0,2) = dim Vy(0,~2) = 2. Moreover V' = sp4(F) & U(L)wy,
where L = sp4(F') has a maximal vector of weight a(2,—2) in Ly, -2
= Fz; and U(L)w; has a maximal vector of weight A\(2,0) in Fuw
with the universal enveloping algebra ¢(L) of L. Here U(L)w; is the
same as V(A(2,0)) = V(A) for A = 0A; + Ay since there exists only one
spa(F)-irreducible module of dimension 5 by proposition (3.1).
All we have to check is that

deg A(2,0) := dim V(A(2,0)) = dimZ{(L)w; = 5.
Since A\; = a; + 27 'ay and \; = a; + ag, we see that
A(2,0) = my A +m2h,
=mi(eq + 27 az) + ma(a; + az)
= (m1 +m2)a(0,=2) + (27 'my 4 ma)a(2,2)

means m; = 0 and m2 = 1, where a; = a(0,--2) and ay = a(2,2). If
we select A as in §3, we obtain

[Té.e)=6
a0
and

[Tx+6.q)

a»0

=TT (@) + (6.0}

a»0
:(</\2’a1> + <6’ ayl>)(</\?’a/2> + (67 a'l))

+ ((Az2, a1 + a2) + (6, a1 + a2)) ({A2, 201 + a2) + {8,201 + a2))
=30.

So we obtain

deg A(2,0) = dim V()

=[x +6a)/ J[(6,0)

a0 a»0

= 30/6 = 5.
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Hence we have
V(A2) = Fhs & Fw; @ Flw, @ Fuy @ Flws
as a by-product. Obviously we obtain
gla(F) = sly(F) & Fla

with Iy the 4 x 4 identity matrix. So we have proven

PROPOSITION 4.1. Let F be an algebraically closed field of char-
acterictic zero. Then sp,(F)-modules sly(F) and gly(F') have their
decompositions

sly(F) = spy(F)®dU(L)wy, and
gla(F) = spa(F) ULy & Fly,

where U( L) denotes the universal enveloping algebra of L = spy( F') and
it turns out that

U(LYwy = Fhs & Fuw, ® Fwy @ Fuy & Flws,.

Moreover sps(F) = V(2A;1 + A\2) and U(L)wy = V{(A2) in terms of

notations of §2.

5. Modular decomposition of sly(F') and ¢l4(F)

We have seen that when F is an algebraically closed field of char-
acteristic zero the natural spy(F)-modules sly(F) and gl4(F) are de-
composed into irreducible pieces explicitly. The similar results may be
conjectured when F is any field of characteristic p. But we must clarify
this conjecture in reality. The two natural sps4(F)-modules sl4( F') and
¢l4(F) have their decompositions as

SI(F) = spa(F) ULy and
gla(F) = spy(F) @ U(L)ywy & FIL,
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and it turns out that U (L)wy = Fhs @ Fw; @ Ftw, ® Fw; @ Flws,
where F' is an algebraically closed field of characteristic 0.
The question is “what about F of characteristic p > 0 ?” Now let

V(XO0,2))r = Fhy @ Fu; @ Ftw, b Fws & Flw,
and let
V(A0,2))z = Zhs B Zw, & Z'wy @ Zw, & T,

so V(A(0,2))r = V(X0,2))z @z F whose notations are relevant to those
in §4. So we know easily that sly(Z) = sps(Z) @ V(A(0,2))z. Hence
sly(F) =sly(Z) @z F
= {sps(Z)©z F} & {V(X0,2))z ®z F }
= sps(F) @ V(MO,2))F
as an spy4( F)-irreducible decomposition for p # 2 since any elementary

basis element in V(A(0, 2))r generates the spy(F')-module V(A(2,0))r
itself. Similarly we obtain

gli(Z) @z F = sps(F) & V(M0,2))p & FIi.

So we have proved

PROPOSITION 5.1. The decomposition of the natural spy(F')-modu
les sl (F) and gly(F) over any ficld F with p # 2 is as follows :

sly(F) = spy(F)y e V(A(0,2))r
gls(F) = spa(F) & V(M0,2))r b Fy.

6. Some facts about modular irreducible sp;(F)-modules

It is not odd to conjecture that all finite dimensional irreducible
sps(F)-modules over an algebraically closed field F' of characteristic
p > 0 may have a common upper bound of their dimensions. This
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section answers the question in this conjecture in the affirmative in
addition to stating that spy(F') is a restricted Lie algebra.

We put h; := diag(1,0,-1,0) and hy := diag(0,1,0,~1). Let a,
r1, 22, 'z2, 73, '23, 24, "4 denote the elementary basis elements as in
§3. Then we see immediately that for L = sps(F),

(adx1)? = 0, (ad'z,)” =0, (adxg)? =0, (adtxy)P =0
(adz3)? =0, (ad‘x3)? =0, (adz4)? =0, (ad‘z4)? =0,

and R ) . .
(adhy)? —adhy; =0, (adh2)? —adh, =0

since p|(2?~! — 1). We shall denote the canonical basis
he b S UL RN SRR S
{]l‘l,hg,‘l,l, T2, X2,23, T3,04, .l,4}

by {u; : i = 1,2,---,10} in any order prescribed, and denote the
universal enveloping algebra of L by U := U{(L).

The PBW theorem asserts that the standard monomials u fl‘ ‘uik: e
ufl‘o" with 73 <2 < -+ <19 and with k; > 0 constitute a basis for .

There is an obvious filtration of & defined by

UN =F 1aLal*s. - -@ Lk

ka
o

. -ufl‘o" with by +ko+-- -+ k1o < k formn

a basis for &%), Since (adu; )’ = ad ug-p] for some u£’)] € L =spy(F) by

. . k
Evidently the monomials u; !«

the above remark, z; := u? — uE”] commutes with every ! € L, and so
z; € Center of U. Hence u,[,-"] (€ L) = u¥ — z; belongs to U?~1),

PROPOSITION 6.1. The elements of the form

~(71 "'0‘2 DERERY “‘alo’llAl ILAz .. lLAlo
T T Tro 0 ez o

<ty <<, 0; 20, 05X <p

with

constitute a basis for U.

Proof. See §7, Chap Vin [2]. O
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PROPOSITION 6.2. Suppose that L is sps(F') over a field F as before.
Then we have a unique mapping a al?! of L into L satisfying that
(adu;)? = ad uEpl as above and that L is a restricted Lie algebra with
respect to the p-mapping a al?!,

Proof. See also §7, Chap V in [2]. O
We see from Lemma (6.1) that the set of all elements

-0 .02 010
T T2 “io

I <y < <ip, 0;20, 0<A;<p-1

form a basis for U(L), L = spy(F).

Now any irreducible L-module M is of the form U(L) - v for any
v € M. But then as U(L)-modules and so as F-modules, we hLave
U(L)/I=U(L) v for some maximal left ideal I of U(L). If M is fimite
dimensional, then I is some infinite dimensional maximal left ideal of
U(L) in particular.

By the way, for any element = € Center of (L), we have a U(L)-
module homomorphism = : U(L)-v — U(L)- v given by z(av) = zzv for
any element x € U(L). Suppose that ¢(L) - v is any finite dimensional
irreducible L-module. Then

ULy -v=z ULy -v=U(L) " zv,

Ar, A A
IU’I‘L‘2"'1,1,'10

MO A with

which forces z to be a constant by Schur’s Lemma. So in this case,
U(L) - v has a basis consisting of at most pl0 clements. Hence we have
the following

PROPOSITION 6.3. Anv finite dimensional irreducible L-module over
an algebraically closed field of characteristic p > 0 has its F-dimension
not greater than ])10.

Recently we have found that auy finite dimensional irreducible spy( F')
-module over F as in the proposition has its dimension not greater than
p* and that actually there exists an irreducible spy(F )-module of maxi-
muin dimension p!. We want to reveal this fact in other journals sooner
or later.
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