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ELLIPTIC SYSTEMS INVOLVING COMPETING
INTERACTIONS WITH NONLINEAR DIFFUSIONS

IN KYUNG AUN

1. Introduction

Our interest is to study the existence of positive solutions to the
following elliptic system involving competing interaction
— il u, )y = uf{x,v.v)
— (e, ) = vg(r,u,v)

1 Ju
(1) an 4+ Ky == 0 on 990
n
dn -
S On 7!

in a bounded region 2 in R"™ with a smooth boundary, where the dif-
fusion terms , ¥ are strictly positive nondecicasing function, and &,
o are positive constants. Also we assume tha: the growth rates f, ¢
are C'! monotone funetions. The variables u, v may represent the pop-
ulation densities of the interacting species in problems from ecology,
microbiology, immunology, ete.

In this paper, we give the existence theorem of positive solutions
to the above elliptie systems for competing int-ractions arising on the
biological models. This model is characterized Ly the monotonicity of f,
¢, i.c.. two species are in competing interaction if each of their relative
growth functions is deereasing in the other. Refer to [9] for details,

In {1}, we provided sufficient and necessary conditions of existence
conditions for the predator-prey interactions. In that paper. we proved
that the existence of positive solutions can be characterized by the
spectral property of a certain operator of Schrodinger type
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There has been several results for system (1) under Dirichlet or Neu-
mann boundary conditions where the diffusion terms ¢ = ¥ = con-
stants. See [6], [7], [8], [5], [10] etc. For those work, topological index
theory and decomposed operator method have been successful in prov-
ing the existence theorems. In this paper, we employ the decomposed
operator motivated by [3] to prove the existence theorem of positive
solutions of system (1).

In section 2, we collect some known lemmas from [1]. In section 3,
we give sufficient conditions of the existence of positive solutions for
competing interactions.

From this paper and [1], we conclude that if the system involves
predator-prey or competing interactions, then the existence of positive
solutions can be characterized by the sign of the principal eigenvalues
of certain differential operators which are determined by given systems.
Therefore the positive coexistence for a 2 x 2 system involving the above
two interactions is determined by the spectral properties of this system,
i.e., the existence of positive solutions is affected by the shape and size
of the domain.

2. Preparations

In this section, we state some known lemmas which will serve as the
basic tools for the arguments used to prove our results. Throughout
this paper we will consider problems in the space X = C(Q), where Q
is a bounded region in R". Let r(7T") denote the spectral radius of a
linear operator T and Aj(A) the first eigenvalue of a suitable operator

A

Let X be a Banach space and let F' be a strongly positive nonlinear
compact operator on X such that F(0) = 0.

LEMMA 1. Assume F'(0) exists with r(F'(0)) > L. If there is no
(0 € (0,1] in any neighborhood of which the equation v = pFu has a
solution u as |lu|| — oo, then F' has a positive fixed point u such that
Fu = u in the positive cone K of X.

Proof. See Theorem 13.2 [2].
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OBSERVATION 1. Let a(x) > &g > 0 and b(r) € L>(). Also let P
be positive constant such that P + b{x) > 0 forr € Q. Then
(1) Ay(a(a)DN 4+ b)) > U@Iwm)A+P“WP+Mn]1
(11),\( TYAN + bl ))<(1¢¢1[(~—(1( )A+ Py (P+b ]<1
(1i1) Ay (u( LIA+ b)) =0 rl{—a(x)A + ')y HP + b(J N] =
where A; Is the first eigenvalue under Robin 1)0111Jda1} (uudir'iuu
= CY§) and alz) = by » O and

2. Suppose that a &
Then there exists « > 0,

OBSERVATION 2.
€ L), Let 7 > 0 be a constant.

blr) &
w € C1(Q), such that for a unigue Ay > 0

—a(@)Au + bla)u = A u

7
L =0 on 0.
an
Moreover, A\ is increasing in :j'[j{
We define the classes F and G ¢ C(2 x R1) as follows
Let Le RY. f ¢ Fifandonly if f € C(Q> RY) and
(F1) f € C' in ¢, fete &) < 0in 2 x R and |fe(z, &) < L for

oo for some

(»1.5-.5) ﬁ SZ > [(),(,’()].
(F2) f(.0) > 0 and f(z,£) < 0. where (2. £ € € % (ey.
> ().

is concave down on the set of {
be C'fun tion in &

£V where flx £) < 0.

constant ¢y
£ -
L
Then p € G

(F3) f(a. &)
< () <« R) and

Let o = (0, &) <

if and only if ¢ satisfies
(('1‘ (.‘ £1 26 > 0 for some constant ¢ anl & & R v e Q.
(G2) ¢(r, £) is nondecreasing and concave dywn in £ € R,

For the ]n()()ft; of the next three lemmas can be found in [1]
LEMMA 2. Let f € F and ¢ ¢ (. Then %% is decreasing in u for

xr e
Counsider the following equation,

— ol ) u = uf(e,u) n Q)

0
Ju + ru = 0 on O92
n
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where k > 0 is a constant.
In [1], we proved that the linearization of the equation (2) at u = 0
18

—o(x,0)A = -f(x,0)
(3)

0
5;;+h =0 on 0N

Let K = C(2)* be the positive cone of the ordered Banach space
C(2). We define the ordered interval [[uy, us]] := {v € C(Q) : u; <
u < ug for uy, uy € C()}.

In the next lemma, A;(A) denotes the first eigenvalue of an operator
A under the boundary condition % + rmu = 0.

LEMMA 3. Let f € F and ¢ € G.

(1) f A (p(2.0)A4 f(2,0)) > 0, then the equations (2) have a unique
positive solution in C?(2).

(it) If Ay(o(z,0)A + f(2,0)) <0, then u = 0 is the only nonnegative
solution of (2).

According to Lemma 3, the equation (2) has a unique positive solu-
tion. We denote it by u, ;. Let u,, . be the unique positive solution
of

- @Il(:Eﬂ“)Au = u_f,,(:n, u)
(4) Ou

.aTl + KU = 0 on BQ

LEMMA 4. If f € F and ¢ € G, then

(1) (¢, f) = u, 5 is a continuous mapping of G x F - C1*(Q x R*)
for some a € (0.1).

(ii) IfL > L % -&, for @ € €, then either u,, j, > ug,.f, or

¥z
Ui N *uﬂon f2 =0.
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3. Existence theorem

In this section, we investigate the existence of positive solutions of

the system (1)
—p(z,u,v)Au = uf(z,u v)

—(z,u,v)Av = vg(z,u,v)

§—+nu:0 on 9N
on

Ov + 0
— +ov =
on

For the competing interaction, we make the following assumptions

on the system (1).

(C1) f, g € CH x R x RT) satisfy

fola,u,v) <0 folz,u,v) <0 foru,v>0
gu(T,u,0) <0 go(z,u,v) <0 for u,v >0

Furthermore, fu, gu # 0 and all partial derivatives are uniformly bounded

on @ x RT x R*.
(C2) There exist positive constants C1, C2 sach that

f(a,u,0) < 0 foru>(C,
g(x,0,v) < 0 forv>C,

(C3) Let o(z,u.v), yb(m,u,v) e C(Q x R™ x RY) and ¢(x,-,v).
Y(z,u,-) € G for fixed u, veRT.

The assumption (C1) describes how these species u, v interact with
each other, while the assumption (C2) indicates that the model under

consideration is logistic.

In this section, let Ay ((A), A1 o(A) denote the first elgemalue of an
operator 4 under the boundary conditions 2 =4k =0 and £ s=+o- =0

respectively.
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REMARK. By Lemma 3, if A; «(¢(2,0,0)A 4 f(2.0,0)) > 0 when
¢ € G, then the equation

- 99(‘[ U,O)AU = Uf(.’L', u, O)
Ou

—é;l-—{»fcu:() on 0f)

has a unique positive solution uyg.

Similarly, if Ay ,(¢(2,0,0)A 4+ ¢g(x,0,0)) > 0 when % € G, then
—(x,0,v)Av = vg(z,0,v)

—(?—zi +ov=10 on dN
on

has a unique positive solution vg.

Before we give the existence theorem, we show a priori bounds of a
positive solution (u,v).

LEMMA 5. Assume Ap «(@(2,0,0)A + f(2,0,0)) > 0 and A1 ,(¥(z,
0,0) + ¢g(«,0,0)) > 0.

If (u,v) is a strictly positive solution to (1), then we have the follow-
ing wmequalities:

0 <ul(z) < up(x) < Cy, 0 <v(z) <wv(e)< Cy

for z € .

Proof. Let u be a positive solution of

—o(r,u,v)Au = uf(z,u,v)
5 .
(5) @+nu=0 on Of1.

On

Also let ug be a positive solution of

- @(x,u,0)Au = uf(z,u,0)
(6) Ju

%-{—HUZO on 0.

128



Elliptic systems involving competing interactions

flz,u,0) Sf{x,u,v)
olr,u,0) = plz,u,v)
tion of (6). Next one can show uy < Cy. In feet, if max,equiz) =

u(wy) > Cy for some xy € Q, then flzg,u{xp:,0) < 0. Thus 0 <
—g(ag, u(xg), 0)Au(zg) = u(we ) fzo,u({2g),0) < 0. This contradiction
shows uy < 'y, Let & = max(C) + 1,maxzeqn ). Then since @ 1s an
upper solution to (6), there exists uy such that v << v, < u. By the
uniqueness of solution to (6), we have u; = uy < €. Then the strong
maximal principle implies (0 < u < wy < Cy. Similarly, one can show
0 < v < ug < Cy.

Since for v > 0 by Lemma 2, u is a lower solu-

Now we give sufficient conditions for the existence of positive solu-
tions of the system {1).

THEOREM. Assume (C1)-(C3).

(a) IF Ay x(p(x, 0,0)A+ f(2,0,0)) <0 or X ,(v(x,0,00)A+¢g(z.0,0))
< 0, then the system (1) has no positive solutior.

(b) Assume Ay (@(2,0,00A 4+ f(r,0,0)) > 0 and Ay o (¢0(2,0,0)A +
g(r,0,0)) >» ('

If\1 (o, 0,v0)A+ f(a,0,09)) > 0 and Ay o (¥(x. ug, 0)A + g(r, uy,
0) >0, tht,’n (1) has a positive solution.

Proof. (a) Suppose (i, ) is a positive solution of system (1). Then

t £ 0 and (@(r, i, 0)A + f(or,u.v))i = 0. Thus according to the
lm»t part of ()1).\(.1\(1t1()11 2, we have Ay (p(2;0,00A + f{r,0,0)) >
Al w00 + fleow,0)) > A a(p(e,u, v} + fle,u v)). a con-
tradiction. So the system has no positive solution. The other case is
similar.

(b) Since Ay o (@(2.0.0)A + f(r.0.0)) > 0 anc ¢ € G, by Lemma 3,

the equation

— la, v )Au = uf(r,u, o{x))
(7} u

— + ru =0 on 08

on
has a unique positive solution w. Then, according to the Lemma 4, we
may define the operator T : C'(?) — C{£2) such that © = Tv is a unique
positive solution to the equation {7). Note that by Lemma 4, it 1s easy
to see that T is a continuous operator and T is strictly monotone. In
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fact, in case that v and v are in competition, T is decreasing in v.
Substituting « by Tv in the other equation, we have

—¥(z,Tv,v)Av = vg(z,Tv,v)
(8)

?34—01):0 on 0f2
on

We define the operator 4 : C(2) — C(£) by considering the equation

(9)

Ow

0 n

—(z, Tv,w)Aw + Pw = vg(z,Tv,v) + Pv
+ow =10 on dN.

Denote this by w = Av = (—¢(z,Tv,)A - +P-) " og(z,Tv,v) + Pv]
where P is a positive constant. Now we are looking for a fixed point
v of the operator A in the positive cone K. Then (Tw,v) is a positive
solution of (1). To this end, we apply nonlinear fixed point theorem
(see Lemma 1). Write Ag = #A. Suppose vg is a fixed point of Ay
where vy € K. Then

(10) - (lt,T”U, %Q)Avg = Bvgg(x,Tvg,vg) + (8 - 1) Pus.

Suppose vg # 0. Let vg(xo) = max,cqve(z) > 0 for some zo € Q.
Then zp € © and at the point zo the left side of (10) is nonnegative
and (6 — 1)Pvg(zo) < 0. Thus we have g(xg,Tvg(zo),ve(z0)) > O.
Since the system involves competing interaction, g(z, Tv,v) < g(z,0,v)
implies that 0 < g(zo, Tve(xo),ve(x0)) < g(z,0,ve(x0)). So by the
assumption (C2), we have vg(xo) < C,. Therefore there is an a priors
bound for the positive fixed point of Ag. Also observe that A'(0) =
(—(x,u0,0)A+ P)(g(z,up,0)+ P) and r(A'(0)) > 1 by Observation
1. Since A is a strongly positive compact operator from C(Q) to C(£),
A has a fixed point v in K by Lemma 1. Note that u = Tv > 0.
In fact, suppose Tv = 0. Then v = vy, so 0 = X1 o(¥(2,0,v)A +
9(z,0,v)) < Ay o(¥(z,0,0)A + ¢(=,0,0)) < 0, a contradiction. Thus
Tv > 0. Therefore (T'v,v) is a positive solution of the system (1).
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Next, we formulate the corresponding results for particular cases of
the sys

stem (1). Consider the following competing system

~ (1 + w)Au = ule; — ajv - byu)

— (2 + v)Av = v(ez — agu -- byv)
(11) -(?ﬁ-{—fiu.:() on IN

an

-QE +ov =10

on

where all constants a;, b;, ¢, are positive for i = 1,2
Then the following corollary is immediate. Let A; denote the first
eigenvalue of —A,

COROLLARY. Assume = > A and 2 > A1, Then the svstem (11)

has a positive solution if %28=01¢2 - ) dnd biea—azey o )
bacy 1 hyen 1

Proof. As we mentioned in Remark, by the ass sumptions 2 > Ay and
—;—f > A1, there exist positive solutions uy to the equation

— (1 +u)Au = u(e; — byu)

Ju
— 4+ &ku =10 on 9N
In

and vy to the equation

~(c2 +vIA = v(ey — bat)

0')
__( + aTU — 0 on OQ
On

If ug > 3+, then we have a contradiction by using the general maximum
principle. Thus 0 < uy < —l Also |log]loe < % —2 Therefore A; ((c1A +
er—ayvg) > Ay (1 A+e ~m b2) > (. Snmldrlv M oz Ates—azug) >

0. Now apply Theorem to get the result.
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