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AREA INTEGRALS WITH A MEASURE
ON GROUPS OF HOMOGENEOUS TYPE

CHOON-SERK SUH

1. Introduction

We define a group of homogeneous type G which is a more general
setting than R™. This group G forms a natural habitat for extensions
of many of the objects studied in Euclidean harmonic analysis.

In 1985, R. R. Coifman, Y. Meyer and E. M. Stein ({1}, [2]) intro-
duced the tent spaces on the upper half-space Ri“ in the Euclidean
space. In this paper, we will develop the theory of the tent spaces on
G < (0, 00). which is an analogue of the upper half-space RT’I. Also,
we are concerned with a relation between area integrals A and W, on
G x (0,0c). If now f is a function on G x (0,cc), then we define
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where T'(2) is the cone with vertex at x € G.
Our main result is that there exists a constant Cp so that if v isa
positive measure on G satisfying v(B(x, p)) < Cp™, then we have

W (e can < CollAON L (dp),

where 0 < p < 1 and dy denotes a positive measure on G.
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2. Preliminaries

Let G be a topological group endowed with a positive measure p
on G. Assume that d is a pseudo-distance on G, i.e., a non-negative
function defined on G x G satisfying

(1) d(z,x)=0;d(z,y) >0if z £y,
(i) d(z,y) = d(y, ), and
(iii) there is a constant K such that d(z,z) < K|[d(z,y) + d(y, )],
Vz,y,z,€ X.
Assume further that

(G1) the balls B(z,p) = {y € G:d(z,y) < p}, p > 0, form a basis
of open neighborhoods at z € G, and

(G2) there is a constant C such that

0 < u(B(z,2p)) < Cu(Blz,p)) < o,

forall z € X,p > 0.
Finally we assume that g is left-invariant:

(G3) u(zE) = p(F) for each = € G and any measurable £ C G,
and

(G4) w(E™!) = u(E),
and that d is left-invariant:

(G5) zB(y,p) = B(zy,p) for all 2,y € G and p > 0.
Then we call (G,d, 1) a group of homogeneous type.

Let (G,d, ) be a group of homogeneous type. Then for p > 0, an
automorphism &, of G is called a dilation on G if

1(ép(E)) = p" u(E)

for some fixed positive integer n and any measurable E C G, and in
particular,

1(8,(B(z,1))) = u(Ble, p)) = Cup™.

where C,, denotes the volume of the unit ball B(e,1). Actually, most
of the time we shall write pz instead of 6,z for p > 0 and r € G.
It is known that d is left-invariant if and only if

d(z,y) = |27y,
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where |- | is a nonnegative function on G satislying
(i) |z| =0if and only if z = ¢,
(i1) |zy| < K(|z| + |y|), where K is some fixed constant, and
(iii) |~ = [«].

lod

For details see [7].
For 2,y € G, and p > 0, the set

Blz.p)={yeG: a7yl < p}

15 called the ball centered at » € G with radius p.
Now consider the space G x (0,00}, which is called the upper half-
space over G. For each ¢ € G, and a > 0, the set

To(z)={(y.1) € G x(0,00) : [z7 'y| < at}

1s called the cone of aperture o whose vertex is ¢ € G. For simplicity,
we put I'(z) = I') ().
For any closed subset F' C G, and « > 0, let

REONF) = U{Tu(z): z € 47}

For simplicity, we put R(F) = RW(F). Let O be an open subset of G
which is the complement of F', () = F°. Then the tent over O, denoted
by T(O), is given as T(O) = R{F)".

For a function f defined on G x (0, 00), we define a functional A(f),

for z € G, by
duly dt)"
A(f)(e) = { / ( |f<y,t)|2—’j%——} ~
o) :

Then the tent space TP (G x (0,00)) is defined as the space of functions
fon G x(0,00), so that A(f) € L?(du), when 0 < p < oc. Define

£z = A Lr(ap)-

For 0 < p <1, afunction a{x.t), supported in T(B) for some ball B
in G, is said to be a TP -atom if

, Codp(aydt »
[ N e, ) LD e
\//“(

17



Choon-Serk Suh

LEMMA 1 ([9]). There exists a constant C so that if f € T} (G x
(0,00)) for 0 < p < 1, then there exist a sequence {a;} of T!-atoms,
and a sequence {);} of positive numbers such that

f@, )] < Aaj(a,t),
j=1

and

Z CNAOIE, 4y

We are now going to generalize A(f). This generalization is associ-
ated with a certain measure on G. Let v be a positive measure on G,
and assume there exists a constant C so that

(2.1) v(B(z,p)) < Cp™

Then for fixed p, 0 < p <1, and a function f defined on G x (0, 00),
we define another functional W,(f), for = € G, by

2(n—m)/p 1/2
Wo(f)(z) = {/P(’_) If(y,t)lzt——tr;l—du(y)dt} :

Note that W,( f) coincides with A(f) when m = n.
As usual, throughout this paper C will denote a constant not neces-
sarily the same at each occurrence.

3. Main result

LEMMA 2. Suppose v is a positive measure on G satisfying the con-
dition (2.1). Let a(y,t) be a T} -atom supported in the tent T(B) of a
ball B having radius p > 0. Then for 0 < p < 1, there exists a constant
C, so that

/ Wyp(a)(z)dv(z) < Cp.
G
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Proof. Let xp(y,) be the characteristic function of the ball B(y,t)
of radius t centered at y. Then

(3.1)
/ W,(a)?(z)dv(x)
G

, 2 (n—mi/p
Z/o /r( )Ia(y’t” g duly)dt o dv(z)

2152("*7")/P
:/G /c (0 )]a(y’t)l i XBGo(D)du(y)dt ¢ dv(z)
i x (0,00

) m+2(n—m)/p
<o e e duw,
G x(0,00) tntl

since
/ XB(ynlx)dv(z) < Ct™
G

Now it is true that ¢ < 2p for (y,t) € T(B) and for small p > 0.
Therefore the last integral of (3.1) is less than

p(n—m)(Z/p—l)/ I ( t)|2
T(B)

since a(y,t) is supported in T(B). Thus by the definition of the atom,
we have

(3.2) /VV a)zdu(x < Clv( B)]l 2/p

&)

J)d#

Note that 1 — 2/p < 0 is used in inequality (3.2). Finally Holder’s
inequality and the inequality (3.2) give that

/ Wy(a) (z)dv(z)

p/2 (2-p)/2
" (a)? (z)dv(z 2Pl gy
s{/ﬂ%()()d()} {[ voi) vt |

<G,

for some constant Cp. The proof is therefore complete.
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THEOREM 3. Suppose v is a positive measure on G satisfying the
condition (2.1). Let 0 < p < 1, then there exists a constant C, so that

HWo(FLravy < CollA(F) Lr(dp)

whenever f € TH (G x (0, 0)).

Proof. Let f € T?(G x (0,00)) for 0 < p < 1. Then by Lemma 1, f
has an atomic decomposition

|f(z,t)] < ZA aj(z,t), and ZA” < CNANNL» (a)-
1=1
Replacing |f(z,t)| by its majorant Z;’Z] Aja;(z,t), we get that

2 42(n—m)/p

WP s [ [ZA as(,1)] o du(y)dt

$2(n— ’")/P

= Z ety Daslyt Vo du(y)dt
t
1/2
2(n-m)/
< Z {/r (Aiai(y,1))? t—t;:]—pdﬂ(y)dt}
t,2

2=/ 1
< sl e dula

= Z AiAjWo(ai)(z2)Wy(aj)(z)

- [Z /\,'Wp(a,-)(:r)]z.
Thus
(3.3) Wa(fY () < [3_ A Wles) ()]
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Integrate both sides of (3.3) with respect to di(z). Then we get that

./ Wi f)P(@)dv(x) S/ Z MW, (a )P (x)dv(z)
G G izl

< Z AP /w Wp(a;)P(x)dv(r)

=1 s

IA

oG
Cy Z AP {by Lemma 2)
=1

Coll AN r a0y

IA

and this completes the proof. 4§

G.
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