AREA INTEGRALS WITH A MEASURE ON GROUPS OF HOMOGENEOUS TYPE

CHOON-SERK SUH

1. Introduction

We define a group of homogeneous type G which is a more general setting than \mathbb{R}^n . This group G forms a natural habitat for extensions of many of the objects studied in Euclidean harmonic analysis.

In 1985, R. R. Coifman, Y. Meyer and E. M. Stein ([1], [2]) introduced the tent spaces on the upper half-space R_+^{n+1} in the Euclidean space. In this paper, we will develop the theory of the tent spaces on $G \times (0, \infty)$, which is an analogue of the upper half-space R_+^{n+1} . Also, we are concerned with a relation between area integrals A and W_p on $G \times (0, \infty)$. If now f is a function on $G \times (0, \infty)$, then we define

$$A(f)(x) = \left\{ \int_{\Gamma(x)} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{n+1}} \right\}^{1/2},$$

and for 0

$$W_p(f)(x) = \left\{ \int_{\Gamma(x)} |f(y,t)|^2 \frac{t^{2(n-m)/p}}{t^{n+1}} d\mu(y) dt \right\}^{1/2},$$

where $\Gamma(x)$ is the cone with vertex at $x \in G$.

Our main result is that there exists a constant C_p so that if ν is a positive measure on G satisfying $\nu(B(x,\rho)) \leq C\rho^m$, then we have

$$||W_p(f)||_{L^p(d\nu)} \le C_p ||A(f)||_{L^p(d\mu)},$$

where $0 and <math>d\mu$ denotes a positive measure on G.

Received November 18, 1993.

2. Preliminaries

Let G be a topological group endowed with a positive measure μ on G. Assume that d is a pseudo-distance on G, i.e., a non-negative function defined on $G \times G$ satisfying

- (i) d(x, x) = 0; d(x, y) > 0 if $x \neq y$,
- (ii) d(x,y) = d(y,x), and
- (iii) there is a constant K such that $d(x,z) \leq K[d(x,y) + d(y,z)]$, $\forall x,y,z,\in X$.

Assume further that

- (G1) the balls $B(x, \rho) = \{y \in G : d(x, y) < \rho\}, \rho > 0$, form a basis of open neighborhoods at $x \in G$, and
 - (G2) there is a constant C such that

$$0 < \mu(B(x, 2\rho)) \le C\mu(B(x, \rho)) < \infty,$$

for all $x \in X, \rho > 0$.

Finally we assume that μ is left-invariant:

- (G3) $\mu(xE) = \mu(E)$ for each $x \in G$ and any measurable $E \subset G$, and
 - (G4) $\mu(E^{-1}) = \mu(E),$

and that d is left-invariant:

(G5) $xB(y,\rho) = B(xy,\rho)$ for all $x,y \in G$ and $\rho > 0$.

Then we call (G, d, μ) a group of homogeneous type.

Let (G, d, μ) be a group of homogeneous type. Then for $\rho > 0$, an automorphism δ_{ρ} of G is called a *dilation* on G if

$$\mu(\delta_{\rho}(E)) = \rho^{n} \mu(E)$$

for some fixed positive integer n and any measurable $E \subset G$, and in particular,

$$\mu(\delta_{\rho}(B(x,1))) = \mu(B(e,\rho)) = C_{n}\rho^{n}.$$

where C_n denotes the volume of the unit ball B(e, 1). Actually, most of the time we shall write ρx instead of $\delta_{\rho} x$ for $\rho > 0$ and $x \in G$.

It is known that d is left-invariant if and only if

$$d(x,y) = |x^{-1}y|,$$

where $|\cdot|$ is a nonnegative function on G satisfying

- (i) |x| = 0 if and only if x = e,
- (ii) $|xy| \leq K(|x| + |y|)$, where K is some fixed constant, and
- (iii) $|x^{-1}| = |x|$.

For details see [7].

For $x, y \in G$, and $\rho > 0$, the set

$$B(x,\rho) = \{ y \in G : |x^{-1}y| < \rho \}$$

is called the ball centered at $x \in G$ with radius ρ .

Now consider the space $G \times (0, \infty)$, which is called the *upper half-space* over G. For each $x \in G$, and $\alpha > 0$, the set

$$\Gamma_{\alpha}(x) = \{(y, t) \in G \times (0, \infty) : |x^{-1}y| < \alpha t\}$$

is called the *cone* of aperture α whose vertex is $x \in G$. For simplicity, we put $\Gamma(x) = \Gamma_1(x)$.

For any closed subset $F \subset G$, and $\alpha > 0$, let

$$\mathcal{R}^{(\alpha)}(F) = \bigcup \{\Gamma_{\alpha}(x) : x \in F\}.$$

For simplicity, we put $\mathcal{R}(F) = \mathcal{R}^{(1)}(F)$. Let O be an open subset of G which is the complement of F, $O = F^c$. Then the *tent* over O, denoted by T(O), is given as $T(O) = \mathcal{R}(F)^c$.

For a function f defined on $G \times (0, \infty)$, we define a functional A(f), for $x \in G$, by

$$A(f)(x) = \left\{ \int_{\Gamma(x)} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{n+1}} \right\}^{1/2}.$$

Then the tent space $T_2^p(G \times (0, \infty))$ is defined as the space of functions f on $G \times (0, \infty)$, so that $A(f) \in L^p(d\mu)$, when 0 . Define

$$||f||_{T_2^p} = ||A(f)||_{L^p(d\mu)}.$$

For 0 , a function <math>a(x,t), supported in T(B) for some ball B in G, is said to be a T_2^p -atom if

$$\int_{T(B)} |a(x,t)|^2 \frac{d\mu(x)dt}{t} \le [\mu(B)]^{1-2/p}.$$

LEMMA 1 ([9]). There exists a constant C so that if $f \in T_2^p(G \times (0,\infty))$ for $0 , then there exist a sequence <math>\{a_j\}$ of T_2^p -atoms, and a sequence $\{\lambda_j\}$ of positive numbers such that

$$|f(x,t)| \le \sum_{j=1}^{\infty} \lambda_j a_j(x,t),$$

and

$$\sum_{i=1}^{\infty} \lambda_j^p \le C||A(f)||_{L^p(d\mu)}^p.$$

We are now going to generalize A(f). This generalization is associated with a certain measure on G. Let ν be a positive measure on G, and assume there exists a constant C so that

(2.1)
$$\nu(B(x,\rho)) \le C\rho^m.$$

Then for fixed p, 0 , and a function <math>f defined on $G \times (0, \infty)$, we define another functional $W_p(f)$, for $x \in G$, by

$$W_p(f)(x) = \left\{ \int_{\Gamma(x)} |f(y,t)|^2 \frac{t^{2(n-m)/p}}{t^{n+1}} d\mu(y) dt \right\}^{1/2}.$$

Note that $W_p(f)$ coincides with A(f) when m = n.

As usual, throughout this paper C will denote a constant not necessarily the same at each occurrence.

3. Main result

LEMMA 2. Suppose ν is a positive measure on G satisfying the condition (2.1). Let a(y,t) be a T_2^p -atom supported in the tent T(B) of a ball B having radius $\rho > 0$. Then for $0 , there exists a constant <math>C_p$ so that

$$\int_{G} W_{p}(a)^{p}(x)d\nu(x) \leq C_{p}.$$

Area integrals with a measure on groups of homogeneous type

Proof. Let $\chi_{B(y,t)}$ be the characteristic function of the ball B(y,t) of radius t centered at y. Then

$$(3.1)$$

$$\int_{G} W_{p}(a)^{2}(x)d\nu(x)$$

$$= \int_{G} \left\{ \int_{\Gamma(x)} |a(y,t)|^{2} \frac{t^{2(n-m)/p}}{t^{n+1}} d\mu(y)dt \right\} d\nu(x)$$

$$= \int_{G} \left\{ \int_{G\times(0,\infty)} |a(y,t)|^{2} \frac{t^{2(n-m)/p}}{t^{n+1}} \chi_{B(y,t)}(x)d\mu(y)dt \right\} d\nu(x)$$

$$\leq C \int_{G\times(0,\infty)} |a(y,t)|^{2} \frac{t^{m+2(n-m)/p}}{t^{n+1}} d\mu(y)d\tau,$$

since

$$\int_{G} \chi_{B(y,t)}(x) d\nu(x) \le Ct^{m}.$$

Now it is true that $t \leq 2\rho$ for $(y,t) \in T(B)$ and for small $\rho > 0$. Therefore the last integral of (3.1) is less than

$$\rho^{(n-m)(2/p-1)} \int_{T(B)} |a(y,t)|^2 \frac{d\mu(y)dt}{t},$$

since a(y,t) is supported in T(B). Thus by the definition of the atom, we have

(3.2)
$$\int_C W_p(a)^2 d\nu(x) \le C[\nu(B)]^{1-2/p}.$$

Note that 1 - 2/p < 0 is used in inequality (3.2). Finally Hölder's inequality and the inequality (3.2) give that

$$\int_{G} W_{p}(a)^{p}(x)d\nu(x)
\leq \left\{ \int_{G} W_{p}(a)^{2}(x)d\nu(x) \right\}^{p/2} \left\{ \int_{G} \chi_{B}(x)^{2/(2-p)}d\nu(x) \right\}^{(2-p)/2}
\leq C_{p}$$

for some constant C_p . The proof is therefore complete.

THEOREM 3. Suppose ν is a positive measure on G satisfying the condition (2.1). Let $0 , then there exists a constant <math>C_p$ so that

$$||W_p(f)||_{L^p(d\nu)} \le C_p||A(f)||_{L^p(d\mu)}$$

whenever $f \in T_2^p(G \times (0, \infty))$.

Proof. Let $f \in T_2^p(G \times (0, \infty))$ for 0 . Then by Lemma 1, <math>f has an atomic decomposition

$$|f(x,t)| \le \sum_{j=1}^{\infty} \lambda_j a_j(x,t)$$
, and $\sum_{j=1}^{\infty} \lambda_j^p \le C ||A(f)||_{L^p(d\mu)}^p$.

Replacing |f(x,t)| by its majorant $\sum_{j=1}^{\infty} \lambda_j a_j(x,t)$, we get that

$$\begin{split} W_{p}(f)^{2}(x) &\leq \int_{\Gamma(x)} \left[\sum_{j=1}^{\infty} \lambda_{j} a_{j}(y,t) \right]^{2} \frac{t^{2(n-m)/p}}{t^{n+1}} d\mu(y) dt \\ &= \sum_{i,j} \int_{\Gamma(x)} \lambda_{i} \lambda_{j} a_{i}(y,t) a_{j}(y,t) \frac{t^{2(n-m)/p}}{t^{n+1}} d\mu(y) dt \\ &\leq \sum_{i,j} \left\{ \int_{\Gamma(x)} (\lambda_{i} a_{i}(y,t))^{2} \frac{t^{2(n-m)/p}}{t^{n+1}} d\mu(y) dt \right\}^{1/2} \\ &\times \left\{ \int_{\Gamma(x)} (\lambda_{j} a_{j}(y,t))^{2} \frac{t^{2(n-m)/p}}{t^{n+1}} d\mu(y) dt \right\}^{1/2} \\ &= \sum_{i,j} \lambda_{i} \lambda_{j} W_{p}(a_{i})(x) W_{p}(a_{j})(x) \\ &= \left[\sum_{i=1}^{\infty} \lambda_{i} W_{p}(a_{i})(x) \right]^{2}. \end{split}$$

Thus

(3.3)
$$W_{p}(f)^{p}(x) \leq \left[\sum_{i=1}^{\infty} \lambda_{j} W_{p}(a_{j})(x)\right]^{p}.$$

Area integrals with a measure on groups of homogeneous type

Integrate both sides of (3.3) with respect to $d\nu(x)$. Then we get that

$$\int_{G} W_{p}(f)^{p}(x)d\nu(x) \leq \int_{G} \sum_{i=1}^{\infty} \lambda_{i}^{p} W_{p}(a_{i})^{p}(x)d\nu(x)$$

$$\leq \sum_{i=1}^{\infty} \lambda_{i}^{p} \int_{G} W_{p}(a_{i})^{p}(x)d\nu(x)$$

$$\leq C_{p} \sum_{i=1}^{\infty} \lambda_{i}^{p} \qquad \text{(by Lemma 2)}$$

$$\leq C_{p} ||A(f)||_{L^{p}(d_{i})}^{p},$$

and this completes the proof.

References

- R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Func. Anal. 62 (1985), 304-355.
- 2. _____, Un nouvel espace fonctionnel adapté a l'étude des opérateurs définis par des intégrales singulières, Proc. Conf. on Harmonic Analysis, Cortona, Lecture Notes in Math. 992, 1-15; Springer-Verlag, Berlin and New York (1983).
- R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math. vol. 242, Springer-Verlag, Berlin, 1971.
- 4. ______, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press and Univ. of Tokyo Press, Princeton, 1982.
- A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 83 (1971), 575-648.
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
- J. Suerio, On maximal functions and Poisson-Szegő integrals, Trans. Amer. Math. Soc. 298 (1986), 653-669.
- 9. C. S. Suh, A decomposition for the tent spaces $T_2^p(G \times (0,\infty))$, preprint.

Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea