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POLYNOMIAL AND RATIONAL ¢ ISOMORPHISMS
OF REAL ALGEBRAIC G VECTOR BUNDLES
AND REAL ALGEBRAIC G VARIETIES

TOMOHIRO KAWAKAMI

1. Introduction

Let G be a real algebraic group. In this paper we consider two
1somorphisms of real algebraic G varieties and real algebraic G vector
bundles.

Let X and Y be algebraic G varieties. We say that X is tsomorphic
to Y with respect to a polynomial G (resp. rational G) variety
1somorphism if there exist polynomial G (vesp. rational G) maps
f:X — Y h:Y — X such that foh == id ho f = id. Here a
rational map means a fraction of polynomial maps with nowhere van-
ishing denominator.

Let n and ¢ be algebraic G vector bundles. We say that 7 is iso-
morphic to ¢ with respect to a polynomial G (resp. rational G) vector
bundle isomorphism if there exist polynomial G (resp. rational G) vec-
tor bundle maps f : y — (, h : { — nsuch that foh =id ho f = id.
In particular, an algebraic G variety (resp. algebraic G vector bundle)
is called rationally G linearizable (resp. ratonally G trivial) if it is
isomorphic to some algebraic G module (resp. some trivial G vector
bundle) with respect to a rational G variety isonorphism (resp. rational
G vector bundle isomorphism).

In the complex category, G.W. Schwarz |7 constructed continuous
families of algebraic G vector bundles over sone G modules, and solved
the linearity problem negatively. M. Masuda and T. Petrie [2][3] intro-
duced an invariant of a polynomial G vector bhundle isomorphism, and
constructed another such families using this invariant. It is known in
[4] that there exists a non-linearizable action of D, x Z (n > 6) on
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R", and that there exists a continuous family of inequivalent actions of
D, x Zy (n > 8) on R*. Here D, means the dihedral group of order
2n and Zy denotes the cyclic group of order two.

The following proves that we can drop Z, factor.

THEOREM 1.1. (1) Let n be even. If n > 10 thea there exists a
non-linearizable action of D, on R*. Ifn > 18 then there exists a
continuous family of inequivalent D,, actions on R*.

(2) Any action constructed in (1) is rationally D,, linearizable.

Theorem 1.1 shows that the above two G variety isomorphisms are
quite different. In the complex category, these isomorphisms between
algebraic G modules are the same.

Let B, F,S be algebraic G modules. For an algebraic G module
M, M denotes the trivial G vector bundle over B with fiber M. Let
Vec(B, F; S) be the set of all algebraic G vector bundles 5 on B with
zero fiber F such that n S = F @& S, where = means a polynomial
G vector bundle isomorphism. Let VEC(B, F; S) denote the set of all
polynomial G vector bundle isomorphism classes of Vec(B, F'; S).

It 1s known in [6][8] that, if we forget the action, every element of
Vec(B, F; S) is isomorphic to the trivial vector bundle F with respect
to a polynomial vector bundle isomorphism.

Let G be the semidirect product of (R*)? and the symmetric group
Sy of q letters, where ¢ > 2. Form € Z, the ¢g-dimensional real algebraic
G module V,, is defined as follows:

m,

(glﬂ"'ﬁgfl)(‘rl7"'?xq‘) = (gl J,‘],,..,g;nl'q)

for any (g1,...,94) € (R*)Y,(z1,...,24) € RY, and S, acts by permu-
tating coordinates.

THEOREM 1.2. (1) VEC(Vi b V_y, V., ®V_.n; R) contains a contin-
uous family of dimension m — 1 if m > 2. Furthermore, there exists a
non-linearizable actions of G x Zq on R4,

(2) Any member of the family constructed in (1) is rationally G trivial.
(3) The action on the total space of any element of the family is ratio-
nally G linearizable.
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Theorem 1.2 shows that the above two GG vector bundle isomorphisms
are quite different. In the complex category, if the base space is a
complex algebraic G module then these isomorphisms are the same.

We get the following when G is compact.

THEOREM 1.3. Let G be a compact real algebraic group and let n
be a real algebraic G vector bundle over a real algebraic G module B.
If there exists some one-dimensional G module S such that n ® S is
rationally G trivial, then 1 is rationally G trivial.

The present paper is organized as follows. We introduce a realifi-
cation of a complex algebraic G vector bundle in section 2. In section
3, we construct a non-trivial family of VEC(B, F;5). In section 4,
we prove that cach element of such family is rationally G trivial, and
Theorem 1.3.

2. Complexifications and realifications

Recall the complexification of real algebraic ¢ varieties and real al-
gebraie G ovector bundles [4].

DEFINITION 2.1, Let X C R”™ be a real algebraic variety with the
coordinate ring O(X). The complex variety X¢ C C" is called the
complexi fication of X if it consists of the comraon zeros of all elements
of O(X) regarded as the map from C" to C,

As casily checked, G is a (resp. reductive) complex algebraic group
if (715 a (resp. compact) real algebraic group, 1nd X¢ is a G varilety
if X 1s a G variety.

DEFINITION 2.2, (1) Let G be an algebraic group and let B, F, S
be algebraic ¢ modules. We define sur(F ¢ S,8) by the set of all
polynomial G vector bundle maps L: F $ S —— 8§ with polynomial G
splitting.

(2) Let G be a real algebraic group and let B, ) 8§ be real algebraie G
modules. For L € sur(FdS, 8), the natural extension Lo FeBSe ——
S s in sur(Fe 4 8¢,8¢). For E = kerL € Vece(B, F; S), we define
Eeo = kerLe € Vee(Be, Fe; Seo) and call it tae complext fication of
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In the complex category, it is known in [1] that any surjective polyno-
mial G vector bundle map F®S — S admits a polynomial G splitting
when G is reductive.

DEFINITION 2.3. Let G be a real algebraic group and let B, F, S be
complex G¢ modules. Suppose ¢ € sur(E® S,8). Then n = kerd is a
complex algebraic G¢ vector bundle over B. A real algebraic G vector
bundle 7’ over a real algebraic G module B’ C B with ' C 7 is called
a real: fication of 7 if the inclusion n' — 7 extends a polynomial G¢
vector bundle isomorphism (n')c — 7.

This realification is not uniquely defined and does not always exist.
The next proposition gives a sufficient condition that a realification
exists.

PROPOSITION 2.4. Let G be a compact real algebraic group and let
B, F,S be complex algebraic Gc modules. Suppose that n = ker$ with
¢ € sur(E @ 8,8). If there exist involutive antiholomorphic automor-
phisms g : B — B,7p : F — F,75 : § — S such that

(1) the fixed point sets of them are not empty

(2) they commute ¢ and the G¢ action
thenn' =nN(B' x (F'x S")) is a realification of n, where B' F' S' are
the fixed point sets of g, Tp, Ts, respectively.

Proof. By Theorem 2.3.7.6 [5], B', F',S' are real forms of B, F, S,
respectively. Hence they are real algebraic G modules because of (2).
Therefore the inclusion B’ x (F' x S') — B x (F x S) extends a poly-
nomial G¢ vector bundle isomorphism A : (B')e x ((F')¢ x (§')¢) —
Bx(FxS). Let ¢' : B'"x(F'x ") — B'x S’ be the restriction of ¢ on
B' x(F'xS§"). By ¢ € sur(E®8S,8) and (2), ¢' € sur(F' ®S8',8'). Set
n' = ker¢’. Then n' is a real algebraic G vector bundle over B’, and the
inclusion ' —— 7 extends a polynomial G¢ vector bundle isomorphism
hne (e — . O

3. Polynomial G isomorphisms

Recall some notations and results [3]. Suppose that G is an algebraic
group, and that B, F,S are algebraic G modules. Let mor(F,S) be
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the set of polynomial G vector bundle maps rom F to 8. Any L €

sur(F @ 8,8) has components L(F, S) and L(.5, 5).

DEFINITION 3.1. Let Z C mor(E,S).
(1) surz(E®S,8)={L € sur(E® S,8)|L(F,S) e Z}.
(2) VECz(B,F;S)= {kerL e VEC(B,F;S)|L € surz(F&8,8)}.
(3) For a trivial G vector bundle M, aut(M) denotes the group of
polynomial G vector bundle automorphisms M, — M.
{4) For ¢ € mor(F.8S),

R(¢)e ={T € end(S)l¢ +T € sur(FE 4 3,8).T(0) = 1d}.

Let G =D, =72, xZy C C*xZ,, and let g be a generator of Z,,, h
a generator of Z,. For m € Z, the two-dimensional complex algebraic

G module U, defined by
gla,b) = (C"a,C7"b), ha,b) == (b, a),

where (a,b) € U, (= Cz) and { = (,’XI)(QW\/r—_l/N).
We are concerned with the case when B = U3, F = U, (0 <2m <
n,mis odd ), § = U,. Let ¢ € mor(E,8) be ¢ a,b)(z,y) = (b*zr,a*y),

where k = (m — 1)/2. Put

{ n if nis odd

n/2 if nis even

One can casily check that any element T € end(8S) is uniquely ex-
pressed as T = L3_, Ti&;, where Ty € O(U2)%, £u(a,b)(s,t) = (s,1), & (a,
b)(s,t) = (at,bs), Ea(a,b)(s,t) = (BNt aV=15), &(a, b)(s.t) = (aVs.
bNt) for any (a,b) € B, (s, t) € S.

THEOREM 3.2. [3] Let Ey(T) = ker(¢+ T, *Ti(z) = Ti(cx), A =
ab, = = a” + bV, and
4 [(n—2m)/4] if 2m <n <4m and n is even
c (m~—1)/2 if 2m <n <4m and n is odd, or dm < n
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(1) FT{Ty = ToT{ mod (AP, E), then E4(T) is isomorphic to E4(T")
with respect to a polynomial G vector bundle isomorphism.
(2) If n is even and there is a non-zero constant ¢ € C such that
(*T)Ty = o(c*T))Ty mod (AP,Z), then the total space of Eg(T) is
1somorphic to that of E4(T") with respect to a polynomial G variety
isomorphism. [

COROLLARY 3.3. [3] The set of actions of G induced from elements
in
VEC4(Uz,Un; Uy) contains a continuous family of dimension f — 1 if
n is even. [

We define the involutive antiholomorphic automorphism of U, by
Tm : Un — U,y Tm(a, b) = (—5,6)

Let U], be the fixed point set of 1,,. Since they satisfy the assumptions
of Proposition 2.4, we have the next result.

THEOREM 3.4. (1) VEC(U,,U],;Uy) contains a continuous family
of dimension f3.
(2) The set of actions of G obtained from elements in VEC(U;,U},; U)
contains a continuous family of dimension 8 — 1 if n is even. [

Theorem 1.1 (1) follows from Theorem 3.4.

Let G be the semidirect product of (C*)? and Sy, where ¢ > 2. Let
W (m € Z) be the ¢g-dimensional complex algebraic (! module defined
as follows:

(91,5 gg) (@1, .-, @) = (917 T1s .-, Gq )

for any (¢1,...,94) € (C*)?,(z1,...,74) € C?, and S, acts by permu-
tating coordinates.
Let B=W, xW_1,F =W, x W_,,,§ = C, wher> m is a positive
integer. We define ¢ € mor(E,S) by
Bla, b)(w,y) = S (al"yi + be), (0,0) € B, (1) € F.

Then O(B)¢ = Cloy,...,0,] and R(¢), = {T € O B)°|T(0) = 1},

where o; is i-th elementary symmetric polynomial of ¢ b;,. .., agb,.
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THEOREM 3.5. [3] VEC,(B,F;S) contains a continuous family of
dimension m — 1. [

Proof of Theorem 1.2, (1) Let 7, : W,,, — W, be Tmla,b) = (Ej)).
Then it is an involutive antiholomorphic automorphism of W5, and the
fixed point set of it is V. Therefore, Theorem 1.2 (1) follows from
Theorem 3.5 and Proposition 2.4, [

4, Rational G triviality

The following is an elementary lemma, and we leave the proof to the
reader.

LEMMA 4.1. Let G be a real algebraic group and let B, F, S be real
algcbraic G modules. Suppose that ¢ € mor(E.8) and T € end(S)
satisfy ¢ + T € sur(E&®8,8). If det T is nowhere vanishing on B then
ker(é 4 T) is rationally G trivial. 0O

Proof of Theorem 1.1 (2). We describe the f(unilv of bundles con-

structed in Theorem 3.4 (1). Let B' = Uj, .~ n.S = Ul As
casily checked, any element T' € md(__’_) it mnquoh (\cpr( ssed  as
T = $9_ Tl where T] € O(B NG = Rlia,a” + @ N and € =

£1(B' % S'). Recall that ¢ € mor(Um, U,) is ¢(a,b)(z,y) = - (bR, aky)
Let ¢' € mor(E',8') be the restriction of ¢ on E!. For T7 € R(¢').

the real algebraic G vector bundle Ep» = Feri¢' +T7) is described by

Ep = {(a f,F,5.5) € B' x F' » §'1 o'
FTS 4 Tlas + ThaN s + Tya™ s = 0},
Define A € aut(F' & 8') by

Ala,a. f, f.5.7)
— ((lr,‘(—l_. = ”A N —A VWIT;,\' _ (li\"—'k‘:lv. -7 1\" ]\—1/]1’— —1\ kT 5,8, 3
3 . 2 3 3+

Then the image Efpv of Ep s

Ha.@, f. .55y € B' x F' x §'la"f + [,3 + Tyas = 0}.
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For a positive real number u and a positive integer [ greater than k,
we consider the next transformation.

{ f=Ff+ ual'c_zI'kT(;s
F=F+ wala'=* T3

This induces A’ € aut(F' © 8'), and the image E"m of Ef., is
{(a,q,f,f,5,5) € B' x F' x S'a*F 4+ (1 + uthTis + Tias = 0},

where t = aa.
Since a* f+(14+uthTis+ Tias = 0 implies @* f+(1+ utYTps+Tlas =

0, the matrix representation and the determinant are the following:

TG (14 ut)T! (s [ —a"f
(1+utl)T0' T/a 3 - —a'f )’

Tia (14 uthT} a2 1\2 /i 2

Since T5(0) = 1, det < 0 for any (a,d) € B’ if | and u are suffi-
ciently large. By Lemma 4.1, each element in the family constructed in
Theorem 3.4 (1) is rationally G trivial. Therefore Theorem 1.1 (2) is
proved. [J

Proof Theorem 1.2 (2) and (3). Let B = V, x Vo, Fo =V, x
Vom, S = R. Let ¢'(a,b)(z,y) = Y1 (a™y; + b™x;), where (a,b) €
B, (z,y) € F. The following is the explicit description of an element Ef
in the set VECy (B, F; S) constructed in Theorem 1.2 (1):

Ef ={(a,b,2,y,2) € B x F x S|¢'(a,b)(z,y) + flor,...,00)z =0},

where o; denotes the i-th elementary symmetric polynomial of a; b, ...
agby, f € Rloy,...,0,] and f(0) = 1.
For a positive real number ¢ and a positive integer ! greater than
m/2,
let
vi =i+ Ca?l_mbglz. 1<e<q.
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This induces A € aut(F & S), and the image E'} of Ef is
Ey ={(a,b,2,y.2)|¢'(a,b)(2,y) + (¢S 270 + f)z = 0}.

Since f(0) =1, ¢T7_,a?'0*' + f # 0 when ¢ and [ are sufficiently large.
By Lemma 4.1, EY} is rationally G trivial, and (3) follows from (2). O

Proof of Theoremn 1.3. If dim B = 0 then there is nothing to prove.
We assume dim B > 1. Let F denote the zero fiber of 5. Since n® S is
rationally G trivial, there exists a rational G vector bundle isomorphism
J:n®S — F&8. Then we have the following exact sequence:

00—y - EnS -8 -—s0,

where 2 1s the composition of the inclusion 3 — 10 S with j, and
that L is the composition ;!
Hence L is a surjective G vector bundle map, and 7 is isomorphic to
ker L with respect to a rational G vector buidle isomorphism. We
identify n with ker L.

For any two real algebraic G modules U and V', we denote mor'(U, V)
by the set of all rational G vector bundle maps from U to V. Then,
there exists a fundamental isomorphism

with the natural projection n 8 — S.

mor'{U, V)= Mor'(B,Hom(L,V NE.

where the right-hand side in this isomorphism is the set of all rational
G maps from B to Hom(U, V') with the conjugate action of G.
Since
mor'(FE 4: S, 8) = mor'(F,8) ¢ mor '(S.8),
= Mor'(B, Hom(F, S)) ¢ @ Mor' (B, Hom(S, S))G,
L:F&$S —— S can be described by L(b, f, ) = (b, ¢(b) f + T(b)s),
€

where b € B, f Fose S0 ¢ Mor (B,Eom(F.S))(" and T €
Mor'(B, Hom(S, S))“. Hence we can write

n={(bfs)eBxE

o(b)f + T(b)s = 0}.
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Taking the dual spaces of F' and S, we have the following correspon-
dence:

Mor'(B, Hom(F, §))¢ — Mor'(B, Hom(S", F*)).

Since G is compact, Mor'(B, Hom(S™, F*))¢ = Mor'(B, Hom(S, F))°.
Therefore ¢ induces the rational G vector bundle map ¢* : § — E
(€ mor'(S,E) = Mor'(B, Hom(S, F))°).

Assume that both ¢(b)¢*(b) and T(b) are zero maps on some fiber
over b € B. By the construction of ¢* and since S is one-dimensional,
#(b)$*(b) is a zero map if and only if ¢(b) is a zero map. Hence L 1s
not surjective on the fiber over b € B. This shows at least one of them
are not zero maps on any fiber.

Since dim B > 1 and G is compact, there exists a non-trivial G
invariant polynomial function on B. Thus for any n € N there exists
a G invariant polynomial function f on B so that deg f > n and that
f(z) > 0 for any x € B.

Since for any b € B ¢(b)¢*(b) and T(b) are endomorphisms of a one-
dimensional real vector space, we regard them as real numbers. Because
for any b € B ¢(b)¢*(b) is non-negative and the above two arguments,
one can find a G invariant polynomial function ! on 3 such that

I(b) > 0 and I(b)p(b)¢*(b) > —T(b) for any b € B.

We define the polynomial G vector bundle automorphism A of E & S
by
A(b, f,s) = (b, f + 1(b)¢"(b)(s), s

The image 1’ of 7 is

{(b,f,s) € B x F x S|g(b)f + (1(b)d(b)¢"(b) + T(b))s = O}.

Hence it suffices to prove that n' is rationally G trivial. By the choice
of I,
1(0)p(b)p* (b) + T(b) # 0 for any b€ 3.

Therefore, by Lemma 4.1, the proof is complete. [
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REMARK 4.2. Each member of the family »f real algebraic O,(R)

vector bundles constructed in Theorem 2.1 [4] is rationally O,(R) triv-
ial, and each element of the family of inequivalent real algebraic O3 (R)x
Z; actions on R* obtained from Theorem 2.5 [4] is rationally 0:(R)xZ,
linearizable.

It 1s reasonable that we conjecture the follovsing.

CONJECTURE. Let G be a compact real algebraic group, and let

B.F.S5 be real algebraic G modules. Every element in VEC(B, F: S)

15 rationally G trivial.

6.

-3
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