PROPERTIES OF THE CONTINUATION OF COMPLEX ANALYTIC MANIFOLDS SPREAD IN Cⁿ

KWANG HO SHON AND JINKEE LEE

0. Introduction

In the theory of one complex variable, it is well known that holomorphic functions cannot in general be extended as holomorphic functions to larger domains. In the space C^n of n complex variables, the conditions are different. In C^n , a domain of holomorphy has important meanings and is a fruitfull domain in which many function theoretical results are obtained.

For functions of two variables, we know the following result : If $\Omega = \{(z_1, z_2) : 1 < |z_1|^2 + |z_2|^2 < 4\}$ then all holomorphic functions on Ω can be extended to the ball $\tilde{\Omega} = \{(z_1, z_2) : |z_1|^2 + |z_2|^2 < 4\}$. This means that zeros of holomorphic functions of more than one variable cannot be isolated.

H. J. Bremmermann [1], F. Norguet [5] and K. Oka [6] solved this problem in \mathbb{C}^n and in the unramified domain over \mathbb{C}^n , F. Docquier and H. Grauert [3] solved this problem in Stein manifold, and J. Kajiwara and K. H. Shon [4] obtained the continuation and vanishing theorem for cohomology of infinite dimensional spaces. We will introduce some properties of the continuation of holomorphic functions and a domain of holomorphy.

1. Prelimirary and notation

Let D be a Hausdorff topological space, φ be a local homeomorphism on D into $C^n = \{z = (z_1, z_2, \dots, z_n) | z_j \in C, 1 \leq j \leq n\}$ and (D, φ) be a (Riemann) domain over C^n i.e. φ spread of D in C^n .

Received December 7, 1995.

The Present Studies were Supported by the Basic Science Research Institute Program, Ministry of Education, 1994, Project No. BSRI-95-1411.

DEFINITION 1.1. A domain over C^n is a pair (D, φ) with the following properties:

1) D is a connected topological space.

2) For every two points $x_1, x_2 \in D$ with $x_1 \neq x_2$ there are open neighborhoods $U_1 = U_1(x_1) \subset D, U_2 = U_2(x_2) \subset D$ with $U_1 \cap U_2 = \emptyset$. 3) $\varphi: D \longrightarrow C^n$ is a locally homeomorphism.

DEFINITION 1.2. A triple (λ, D', φ') is an analytic completion of a domain (D, φ) over C^n if

 \cdot 1) (D', φ') is a domain over C^n i.e. $\varphi' : D' \longrightarrow C^n$ is a locally homeomorphism.

2) $\lambda: D \longrightarrow D'$ is a local homeomorphism.

3) $\varphi = \varphi' \circ \lambda$.

4) For any holomorphic function f on D, there is a holomorphic function f' on D' such that $f = f' \circ \lambda$.

We say that the above described diagram is commutative if $\varphi = \varphi' \circ \lambda$ and $f = f' \circ \lambda$, and we say that f' is an analytic prolongation of f to $(\lambda, D', \varphi').$

In case that n = 1, there is no analytic completion. In case of $n \ge 2$, we let $z = (z_1, z_2, \dots, z_n), z' = (z_2, z_3, \dots, z_n)$ and $z = (z, z') \in D$ where

$$D = \{z \in C^n | r^2 < |z_1|^2 + |z_2|^2 + \dots + |z_n|^2 < R^2 \}.$$

If z is a point of D then

$$\frac{\sqrt{r^2 - |z_2|^2 - |z_3|^2 - \dots - |z_n|^2}}{<\sqrt{R^2 - |z_2|^2 - |z_3|^2 - \dots - |z_n|^2}}.$$

For $z' \in C^{n-1}$ with $|z_2|^2 + |z_3|^2 + \cdots + |z_n|^2 > r^2$ we have

$$|z_1|^2 + |z_2|^2 + \dots + |z_n|^2 > r^2$$

and

$$z \in D \Leftrightarrow |z_1| < \sqrt{R^2 - |z_2|^2 - |z_3|^2 - \cdots - |z_n|^2}.$$

360

In this case,

$$\Delta(z') = \{z_1 \in C | \sqrt{r^2 - |z_2|^2 - |z_3|^2 - \dots - |z_n|^2} < |z_1| \\ < \sqrt{R^2 - |z_2|^2 - |z_3|^2 - \dots - |z_n|^2} \} \\ = \{z_1 \in C | |z_1| < \sqrt{R^2 - |z_2|^2 - |z_3|^2 - \dots - |z_n|^2} \}.$$

For $z' \in C^{n-1}$ with $|z_2|^2 + |z_3|^2 + \dots + |z_n|^2 \leq r^2, \Delta(z')$ is the of form

$$\{z \in C | 0 < |z_1| < \sqrt{R^2 - |z_2|^2 - |z_3|^2 - \dots - |z_n|^2} \}$$

or

$$\{z \in C | \sqrt{r^2 - |z_2|^2 - |z_3|^2 - \dots - |z_n|^2} < |z_1| \\ < \sqrt{R^2 - |z_2|^2 - |z_3|^2 - \dots - |z_n|^2} \}.$$

Thus we obtain a well defined holomorphic function f' on $D' = \{z \in C^n | |z_1|^2 + |z_2|^2 + \cdots + |z_n|^2 < R^2\}$. Therefore, a holomorphic function of $n \ge 2$ complex variables cannot have isolated singularities. Furthermore, it cannot have isolated zeros.

DEFINITION 1.3. Let (D, φ) be a domain over a (connected) complex analytic manifold M and $\mathcal{H}(D)$ be a family of holomorphic functions on D. A triple $(\tilde{\lambda}, \tilde{D}, \tilde{\varphi}) = (\tilde{D}, \tilde{\varphi}, \tilde{\lambda}, \tilde{f})$ is an envelope of holomorphy (or a continuation) of $(D, \varphi) = (D, \varphi, f)$ with respect to $\mathcal{H}(D)$ if

1) $(\tilde{\lambda}, \tilde{D}, \tilde{\varphi})$ is an analytic completion of (D, φ) with respect to $\mathcal{H}(D)$.

2) For any analytic completion $(\tilde{\lambda}, \tilde{D}, \tilde{\varphi})$ of (D, φ) , there is a local homeomorphism $\mu : D' \longrightarrow \tilde{D}$ such that $(\mu, \tilde{D}, \tilde{\varphi})$ is an analytic completion of (D', φ') with respect to the family of all analytic continuations of functions of $\mathcal{H}(D)$.

Let V be a complex (analytic) manifold and $\mathcal{H}(V)$ be a family of holomorphic functions on V. A triple (λ, V', φ') is an envelope of holomorphy of (V, φ) with respect to $\mathcal{H}(V)$ if

1) (V', φ') is a domain over C^n .

2) For any f in $\mathcal{H}(V)$, there is a holomorphic function f' on V' such that $f = f' \circ \lambda$ and $\varphi = \varphi' \circ \lambda$.

3) $\lambda: V \longrightarrow V'$ is a local homeomorphism.

2. Geometrically properties of complex domains

H. Cartan [2] proved the unique existence of such envelope of holomorphy. Espectially if $\mathcal{H}(D)$ consists of only one holomorphic function f on D, the envelope of holomorphy of (D,φ) with respect to $\mathcal{H}(D)$ is called a domain of holomorphy of f. A domain over M which is a domain of holomorphy of a holomorphic function on a domain over M is called shortly a domain of holomorphy. Moreover if $\mathcal{H}(D)$ is the family of all holomorphic functions on D, the envelope of holomorphy of (D,φ) with respect to $\mathcal{H}(D)$ is called shortly the envelope of holomorphy of (D,φ) .

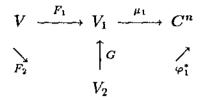
DEFINITION 2.1. The maximal continuation of $(D, \varphi, \mathcal{H}(D))$ is called the envelope of holomorphy of (D, φ) .

THEOREM 2.2. Let V be a complex manifold, $(V,\varphi_j)(j=1,2)$ be two domains over \mathbb{C}^n , and let $(V_j, \mu, F_j, \mathcal{H}(V_j))$ be the maximal continuation of $(V, \varphi_j, \mathcal{H}(V))$ for j = 1, 2. Then V_1, V_2 are homeomorphic under a mapping $G: V_2 \longrightarrow V_1$ such that the following diagram

C^n	<i>φ</i> 1 ←	V	$\xrightarrow{\varphi_2}$	C^n
μ_1 †				↑ µ 2
V_1		$\stackrel{G}{\longleftarrow}$		V_2

with local homeomorphisms $F_1 : V \longrightarrow V_1$ and $F_2 : V \longrightarrow V_2$ is full commutative.

proof. If $\varphi_1 = (\varphi_{11}, \varphi_{12}, \cdots, \varphi_{1n})$, then the functions $\varphi_{1j} \in \mathcal{H}(V)$ and so can be continued to functions $\varphi_1^* = (\varphi_{11}^*, \varphi_{12}^*, \cdots, \varphi_{1n}^*)$ on V_2 . Since φ_1, φ_2 are local homeomorphic, the Jacobian $J = \frac{\partial \varphi_2}{\partial \varphi_1}$ never vanishes on V and $J \in \mathcal{H}(V)$. Both J and J^{-1} can be continued to functions J^* and $(J^{-1})^*$ in $\mathcal{H}(V_2)$. By the principle of analytic continuation we have $J \circ J^{-1} \equiv 1$ on V. Hence $J^*(J^{-1})^* \equiv 1$ on V_2 . Therefore J^* never vanishes. And $J^* = \frac{\partial \varphi_1^*}{\partial \mu_2}$, so that φ_1^* is a local homeomorphism and (V_2, φ_1^*) is a domain over C^n . Since $\varphi_1 = \varphi_1^* \circ F_2$, $(V_2, \varphi_1^*, F_2, \mathcal{H}(V_2))$ is a continuation of $(V, \varphi, \mathcal{H}(M))$, and maximality of $(V_1, \mu_1, F_1, \mathcal{H}(V_1))$ implies the existence of a domain (V_2, G) over V_1 such that the following diagram commutes.



Similarly extending φ_2 to φ_2^* we find φ_2^* is a local homeomorphic spreading V_1 in \mathbb{C}^n such that $\varphi_2 = \varphi_2^* \circ F_1$. If we use maximality of $(V_2, \mu_2, F_2, \mathcal{H}(V_2))$, we obtain a mapping \tilde{G} which spread V_1 in V_2 and gives the following commutative diagram.

Hence the above diagram with $\varphi_2 : V \longrightarrow C^n$ is commutative. If $a \in V$ and U is a small neighborhood of a, then F_2 is homeomorphic on U into V_2 . On $F_2(U)$, we have

$$\tilde{G}G(y) = y \Leftrightarrow \tilde{G}G(F_2(x)) = F_2(x)$$

for all $x \in U$. But from the above diagrams, we know that

$$F_2^{-1}\tilde{G}GF_2(x) = F_2^{-1}\tilde{G}F_1(x) = F_2^{-1}F_2(x) = x.$$

Therefore, from the analytic continuation, $\tilde{G}G(y) = y$ on V_2 . Similarly, $G\tilde{G}(x) = x$ on V_1 and G is global homeomorphic.

COROLLARY 2.3. The envelope of holomorphy is not univalent.

PROPOSITION 2.4. Let $M = \{(z_1, z_2) \in C^2 | |z_2| < Re(z_1) < |z_2| + 6\}$ and

$$\varphi:(z_1,z_2)\to (e^{iz_1},z_2).$$

If $\tilde{M} = \varphi(M)$, then φ is a homeomorphism of M onto \tilde{M} . Any $f \in \mathcal{H}(M)$ can be extended to $N = \{(z_1, z_2) \in C^2 | |z_2| < \operatorname{Re}(z_1)\}.$

Proof. We know the first part from $6 < 2\pi$. If $\operatorname{Re}(z_1) > 0$, then $f(z,\zeta)$ is defined and holomorphic for all ζ with $\operatorname{Re}(z_1) - 6 < |\zeta| < \operatorname{Re}(z_1)$, and we see that f extends by examining the coefficient functions $\varphi_k(z_1)(k < 0)$ in the Laurent expansion $f(z_1,\zeta) = \sum_{k=-\infty}^{\infty} \varphi_k(z_1)\zeta^k$. But N is a domain of holomorphy because it is convex, and this means that $(N,\varphi,\tilde{\mathcal{H}},i_1)$ is the envelope of holomorphy of $(M,\varphi,\mathcal{H}(M))$ where $i_1 = \operatorname{id}_M$ and

$$\tilde{\mathcal{H}} = \{ \tilde{f} \in \mathcal{H}(N) | \ \tilde{f} \text{ extends } f \text{ to } N, f \in \mathcal{H}(M) \}$$

and φ is identified with the natural spread of the envelope of holomorphy in C^n .

REMARK 2.5. If $U \subset M$ is a compact set, and $\tilde{U} = \iota_1(U)$ its images in N then $\varphi^{-1}(\varphi(\tilde{U}))$ is usually not compact.

References

- H. J Bremmermann, Uber die Aquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum von n komplexen Veränderlichen, Math. Ann. 128 (1954), 63-91
- H. Cartan, Théorie des fonctions de plusieurs variables: Sem. de Cartan, Ecole Norm, Sup. (1954-1954)
- 3. F. Docquier und H. Grauert, Levisches Problem und Rungesher Sactz für Teilgebiete Steinscher Mannigfaltigkeit, Mat., Ann. 140 (1960), 94-123.
- J. Kajiwara and K. H. Shon, Continuation and vanishing theorem for cohomology of infinite dimensional spaces, Pusan Kyöngnam Math. J. 9 (1993), 65-73
- F. Norguet, Sur les domains d'holomorphie des fonctions uniforme de plusieurs variables complexes (Passage du local au global), Bull. Soc. Math. France 82 (1954), 137-159.
- 6 K. Oka, Sur les fonctions analytiques de plusieurs variables complexes: IX. Domaine finis sans point critique intérieur, Jap J. Math. 23 (1953), 97-155.

Department of Mathematics Pusan National University Pusan 609-735, Korea