BRIESKORN MANIFOLD INDUCED IN HYPERSURFACE OF A PRODUCT OF TWO SPHERES

Shin,Yong Ho and Kang, Tae Ho

0. Introduction

The ($2 n$-1)-dimensional Briesioorn manifold $B^{2 n-1}$ is the intersection of a complex cone and a $(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$.

It is well-known that every Brieskorn manifold is a contact manifold and admits many Sasalian structures[1].

The purpose of the present paper is to show that the converse statement is true in hypersurface of a product of two spheres under some additional condition.

In section 1, we recall the structure equations of hypersurface M of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.

In section 2 , we prove that the converse statement is true in M. All geometric objects and mappings throughout this paper are of C^{∞}.

1. Structure equations of hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$

K.Yano[2] proved that the (f, g, u, v, λ)-structure is natually induced on $S^{n} \times S^{n}$ as a submanifold of codimension 2 of a ($2 n+2$)-dimensional Euclidean space or a real hypersurface of ($2 n+1$)-dimensional unit sphere $S^{2 n+1}(1)$.
S.-S. Eum, U-H. Ki and Y.H. Kim [3] researched the condition that a real hypersurface of $S^{n} \times S^{n}$ becomes a Brieskorn manifold.

[^0]Let M be a hypersurface immersed isometrically in $S^{n}(i / \vee 2) \times$ $S^{n}(1 / \sqrt{2})$ and suppose that M is covered by the system of coond nate neighborhoods $\left\{\bar{V} ; \bar{x}^{a}\right\}$, where here and in the sequel, the indices a, b, c, d, \cdots run over the range $\{1,2, \cdots, 2 n-1\}$.

Since the immersion $i: M \rightarrow S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ is isometric from the (f, g, u, v, λ)-structure defined on $S^{n} \times S^{n}$, we obtain the st. called ($f, g, u, v, w, \lambda, \mu, \nu$)-structure[2] given by

$$
\begin{align*}
f_{b}^{e} f_{e}^{a} & =-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{a}, \\
f_{e}^{a} u^{e} & =-\lambda v^{a}+\mu w^{a}, \\
f_{e}^{a} v^{e} & =\lambda u^{a}+\nu w^{a}, \tag{1.1}\\
f_{e}^{a} w^{e} & =-\mu u^{a}-\nu v^{a}
\end{align*}
$$

or, equivalently

$$
\begin{align*}
& u_{e} f_{a}^{e}=\lambda v_{a}-\mu w_{a}, v_{e} f_{a}^{e}=-\lambda u_{a}-\nu w_{a}, w_{e} f_{a}^{e}=\mu u_{a}+\nu v_{a}, \\
& u_{e} u^{e}=1-\lambda^{2}-\mu^{2}, u_{e} v^{e}=-\mu \nu, u_{e} w^{e}=-\lambda \nu, \\
& v_{e} v^{e}=1-\mu^{2}-\nu^{2}, v_{e} w^{e}=\lambda \mu \tag{1.2}\\
& w_{e} w^{e}=1-\mu^{2}-\nu^{2}
\end{align*}
$$

where u_{a}, v_{a} and w_{a} are 1-forms associated with u^{a}, v^{a} and w^{a} respectively given by $u_{a}=u^{b} g_{b a}, v_{a}=v^{b} g_{b a}$ and $w_{a}=w^{b} g_{b a}$, and $f_{b a}=f_{b}^{c} g_{c a}$ is skew-symmetric. Moreover, we get

$$
\begin{align*}
& k_{\mathrm{c}}^{e} k_{e}^{a}=\delta_{c}^{a}-k_{c} k^{a}, \tag{1.3}\\
& k_{e} k^{e}=1-\alpha^{2}, \tag{1.4}\\
& k_{c}^{e} u_{e}=-v_{c}-\mu k_{c}, k_{c}^{e} v_{e}=-u_{c}-\nu k_{c}, \tag{1.5}\\
& \nabla_{c} u_{b}=\mu l_{c b}-\lambda k_{c b}+f_{c b}, \tag{1.6}\\
& \nabla_{c} v_{b}=k_{c}^{e} f_{e b}-k_{c} w_{b}+\nu l_{c b}+\lambda g_{c b} . \tag{1.7}
\end{align*}
$$

We introduce the following Remark and Theorem for later use.

Remark [4]. If $\lambda^{2}+\mu^{2}+\nu^{2}=1$ on the hypersurface M, we see that

$$
\mu=0, \quad \nu=\operatorname{constant}(\neq 0), \quad v_{c}=0 \quad \text { and } \quad \alpha=0
$$

And if the function λ vanishes on some open set, then we have $v_{c}=0$ and $\mu=0$. Moreover the 1 -form u_{b} never vanishes on an open set in M, in fact, if the 1 -form u_{b} is zero on an open set in M, then $f_{c b}=0$, which contradicts $n>1$.

Theorem A [4]. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n$
$>1)$ with $(f, g, u, v, w, \lambda, \mu, \nu)$-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. If M is minimal, then M as a submanifold of codimension 3 of a $(2 n+2)$ dimensional Euclidean space $E^{2 n+2}$ is an intersection of a complex cone with generator C and $(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$.

2. Brieskorn manifold induced in Hypersurface

In this section, we assume that the ($f, g, u, v, w, \lambda, \mu, \nu$)-structure induced on M admits an almost contact metric structure $\left(f_{b}^{a}, g_{c b}, p^{a}\right)$ and $n>1$, that is , M satisfies

$$
\begin{align*}
& f_{b}^{e} f_{\epsilon}^{a}=-\delta_{b}^{a}+p_{b} p^{a} \tag{2.1}\\
& p_{a} p^{a}=1 \tag{2.2}
\end{align*}
$$

From (1.1) and (2.1), we see

$$
\begin{equation*}
p_{b} p^{a}=u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{a} \tag{2.3}
\end{equation*}
$$

Contracting this equation with respect to the indices a and b, we get

$$
p_{a} p^{a}=1+2\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)
$$

with the aid of (1.2).
Therefore, we have

Lemma 2.1. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>$ 1) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure. Then M admits an almost contact metric structure ($f_{b}^{a}, g_{c b}, p^{a}$) if and only if $\lambda^{2}+\mu^{2}+\nu^{2}=1$ holds on M.

Using Remark stated in section 1, (1.4) becomes

$$
\begin{equation*}
k_{e} k^{e}=1, \tag{2.4}
\end{equation*}
$$

so k^{a} is an unit vector, and it follows from (1.5) that

$$
\begin{equation*}
u_{c}=-\nu k_{c}, \tag{2.5}
\end{equation*}
$$

and the second equation of (1.2) and (2.3) yields

$$
\begin{equation*}
w_{c}=\lambda k_{c} . \tag{2.6}
\end{equation*}
$$

Substituting (2.5) and (2.6) into (2.3), and taking account of Remark and Lemma 2.1, we find

$$
p_{b} p^{a}=k_{b} k^{a},
$$

or equivalently

$$
\begin{equation*}
p_{b}= \pm k_{b} . \tag{2.7}
\end{equation*}
$$

Thus we have
Lemma 2.2. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>$ 1) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure. If M admits an almost contact metric structure ($f_{b}^{a}, g_{c b}, p^{a}$), then the aggregate $\left(f_{b}^{a}, g_{c b}, k^{a}\right)$ also defines an almost contact metric structure.

Transvecting $g^{c b}$ to (1.7) and taking account of Remark, (2.4) and (2.6), we find

$$
\begin{equation*}
l=-2 \lambda(n-1) / \nu \tag{2.8}
\end{equation*}
$$

where we have put $l=g^{c b} l_{c b}$.
Hence, we have

Lemma 2.3. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>$ 1) with ($f, g, u, v, v, \lambda, \mu, \nu$)-structure. If M admits an almost contact metric structure $\left(f_{b}^{a}, g_{c b}, p^{a}\right)$, then M has a constant mean curvature.

Next we assume that p^{c} is a killing vector on M. Since we have $\mathcal{L}_{p} g_{c b}=0$ for a killing vector p^{a}, we have also $\mathcal{L}_{k} g_{c b}=0$, and

$$
\begin{equation*}
\mathcal{L}_{u} g_{c b}=\nabla_{c} u_{b}+\nabla_{b} u_{c}=-2 \lambda k_{c b}=0, \tag{2.9}
\end{equation*}
$$

with the aid of (1.6) and Remark.
Transvecting $g^{c b}$ to (2.9) and taking account of (1.3), (2.4) and $n>$ 1, we obtain

$$
\begin{equation*}
\lambda=0 \tag{2.10}
\end{equation*}
$$

From (2.8) and (2.10), it follows that M is minimal.
Conversely, if M is minimal, then the equation (1.6) together (2.8), (2.10) and Remark implies that

$$
\nabla_{c} u_{b}=f_{c b},
$$

which shows that u^{c} is a killing vector because $f_{c b}$ is skew-symmetric with respect to b and c, and also both k^{a} and p^{a} are killing vectors because of (2.7) and (2.5).

Thus we have
Theorem 2.4. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n$ >1) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure, and let M admits an almost contact metric structure ($f_{b}^{a}, g_{c b}, p^{a}$). Then p^{a} is a killing vector if and only if M is minimal.

And also, by making use of Theorem 3.1 [5] and (2.10), we have
Theorem 2.5. Under the same assumptions as those stated in Theorem 2.4. If p^{a} is a killing vector, then M is an f-invariant hypersurface.

Combining Lemma 2.1 and Theorem 2.4 with Theorem A, we conclude

Theorem 2.6. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n$
>1) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure, and let M admits an almost contact metric structure ($f_{b}^{a}, g_{c b}, p^{a}$), p^{a} being a killing vector. Then M as a submanifold of codimension 3 of a ($2 n+2$)-dimensional Euclidean space $E^{2 n+2}$ is an intersection of a complex cone with generator C and a $(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$, that is, a Brieskorn manifold $B^{2 n-1}$.

Finally, let M admit a Sasakian structure, that is, the given structure satisfies (2.1), (2.2) and

$$
\begin{equation*}
\nabla_{c} f_{b}^{a}=-g_{c b} p^{a}+\delta_{c}^{a} p_{b} \tag{2.11}
\end{equation*}
$$

Transvecting (2.1) with $p_{a} p^{b}$ and making use of (2.2), we get

$$
\begin{equation*}
f_{b}^{e} p_{e}=0 \tag{2.12}
\end{equation*}
$$

If we differentiaite (2.2) covariantly, we obtain

$$
\begin{equation*}
\left(\nabla_{c} p^{e}\right) p_{e}=0 \tag{2.13}
\end{equation*}
$$

Differentiating (2.12) covariantly and using (2.11), we find

$$
f_{b}^{e}\left(\nabla_{c} p_{e}\right)=g_{c b}-p_{c} p_{b}
$$

Applying this with f_{a}^{b}, and making use of (2.1), (2.12) and (2.13), we have

$$
\nabla_{c} p_{a}=f_{c a},
$$

which implies that p^{a} is a killing vector.
Combining Theorem 2.6 with the fact that p^{a} is a killing vector, we find

Theorem 2.7. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n$
>1) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure. If M admits a Sasakian structure, then M is a Brieskorn manifold $B^{2 n-1}$.

References

1 K Yano and M Kon, Structures on Manafolds, World Scsentific publishing Co Ltd, 1984, pp 291-305
2 Yano,K, Differentral geometry of $S^{n} \times S^{n}$, J. Diff Geo 8 (1973), 181-206.
3 Eum,S-S.,U-H Kı and Y.H.Kim, On hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$, J.Korean Math.Soc. 18 (1982), 109-122.

4 Shin, Yong Ho, Structure of a Hypersurface ammersed in a Product of two Spheres, Pusan Kyŏngnam Math J. 11(1) (1995), 87-113.
5 Shin, Yong Ho, f-invarzant Hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$, J. of Natural Science, University of Ulsan 2(1) (1992), 1-11.

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

[^0]: Received November 30.1995.
 The present studtes were partially supported by University of Ulsan Research Fund, 1995

