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STAHE CLOSURE SPACES FOR AUTOMATA

G.I.Chae and Y.S.Park

1. Introduction
The theory of automata has considerable influences on development 

of computer systems, their associated softwares and etc. However, it 
has long been hampered by the lack of standard notations and the 
scarcity of basic manipulative tools. To improve these problems, the 
concepts of successor operator 8 and source operator a have been used 
as tools by Z.Bavel [3], an algebraic structure by W.M.Holcombe [7] 
and M.Huzino [9], and the concept of topology by J.Chvalina [5].

It is known that weaker forms of a topological structure can be 
given on a set, for example, a neighborhood closure, a semi closure and 
a quasi closure. In [5] the quasi closure is called a closure operation, 
which is a generalization of Kuratowski5s closure operator. In this 
paper we will use it to define a state closure space and investigate 
properties (the connectivity, separation and so on) of automata in point 
of view of closure spaces. We expect to improve the difficulties and 
to understand more easily theories of automata through relation아lips 
between closure spaces and automata. Almost all of Lemmas in this 
section, which are neccessary to obtain results of relations between 
시osure space and automata, are described without their proofs.

DEFINITION 1.1. If tz is a single-valued relation on 7>(X) ranging in 
P(X) where P(X) is the power set of a set X, then u is said to be a 
closure operation for X if it satisfies the following : for each R,T C 
X,

(Cl) u(0) = 0.
(C2) R c t/(R).
(C3) u(R U T) = u(R) U u(T).
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The struct (X,u) is called a closure space^ u(R) is called the closure 
of R C X. A subset R of (X5u) is said to be closed if u(R) = R, and 
open if its complement i용 closed, i.e., if u(X—R) = X—R. Note that 
a closure operation u is a Kuratowski^ 시osure operator if u(R) = 
u(u(R)) for each R C X. In that event the closure operation u is said 
to be topological.

The identity relation d on P(X) and the relation i defined by i(0)= 
0 and z(R) = X for each non-empty subset R of X are clearly closure 
operations for a set X. (X,d) and (X,i) are called the discrete and the 
indiscrete closure space, respectively. In Example 1.10, (X, u) and 
(Y,t;) are closure spaces but not topological spaces.

Lemma 1.2. Let (X,u) be a closure space. Then for each A C X,
(1) If A (Z B, then u(A) C v(B).
(2) u(A) C u(u(A)).
(3) u(X) = X.

LEMMA 1.3. The family of all closed (resp. open) subsets of a clo
sure space (X,u) is Hnitely additive and arbitrary multiplicative (resp. 
arbitrary additive and finitely multiplicative).

DEFINITION 1.4. Let R be a subset of a closure space (X,u). The 
set intu(R) = X — u(X—R) [simply, int(R)] is called the interior of R. 
N is called a neighborhood (shortly, a nbd) of R if R C intu(N).

Lemma 1.5. We get easily in (X,u) the following : for each R,T C 
X,

(1) in"JX) = X.
(2) intu(R) C R.
(3) intu(R n T) = intu(R) D intu(T).
(4) Let int be a relation satisfying (1), (2) and (3). Then u = {R 

—> u(R)} is a closure operation for X if u(R) = X — int(X — 
R), and int = intu.

DEFINITION 1.6. A function f from a closure space (X,u) into a 
closure space (Y,v) is said to be continuous at x E if for each R C 
X, x € u(R) implies /(x) G v[f(R)], and continuous if it is continuous 
at each point of X, equivalently, if /[u(R)] C v[/(R)] for each R C X.



State Closure Spaces 343

LEMMA 1.7. Let (X,u) and (Y,v) be closure spaces. Then f : X
Y is continuous iff u(f~1(T)) C f~r(v(T)) for each T C Y.

Proof. Suppose f is continuous. Let R =厂'(T) for any T C Y, 
then /(u(R)) C v(T). Thus u(R) C /""1[v(T)]. Conversely, let T = 
/(R) for arbitrary R C X and Rj = Then u(Ri) = tz[/-1(T)]
implies /[w(Ri)] U v(T) = v[/(Ri)] = v[/(R)]. By Lemma 1.2, u(R) 
C w(Ri) since R C Ri- Hence /[u(R)] C /[u(Ri)] C 이了(R시.

LEMMA 1.8. Let f be a function from a closure space (X,u) to a 
closure space (Yfv). Then the inverse image of any open (resp. closed) 
subset of Y is open (resp. closed) in X if f is continuous.

LEMMA 1.9. Let (X,u) and (Y,v) be respectively a closure space 
and a topological space. Then the following are equivalent:

(1) f : (X,u) —> (Y,v) is continuous.
(2) 厂'(R) is closed for each closed subset R of Y.
(3) 厂、(V) is open for each open subset V of Y.

Example 1.10. Let X = (p,q,r}, u({p}) = {p,q}5 ”({q}) = {q以 

u({r}) = {r}, u(0) = 0, u(X) = X and Y = (a,b,c), v({a}) = {a}, 
v({b}) = {a,b}, v({c}) = {b,c}, v(0) = 0, v(Y) = Y. Then 인 and v 
are closure operations for X and Y, respectively. Let / be a function 
from (X,iz) to (Y,v) defined by f(p) = {c}, /(q) = {a} and /(r) = {a). 
Because q G w({p}) = (p,q} but /(q)《v[/((p})], f is not continuous 
even though the inverse image of each closed subsets of Y is closed. The 
converse of Lemma 1.8 is thus not true. Note that v is not topological 
and the inverse image of the closure (b,c} of Y is not a closure of X.

2. State Closure Spaces
An automaton is a triple A = (Q,S,6), where Q is a set (of the 

internal states), S is a nonempty set (of the input symbols), and 8 : Q 
X E t Q is the (next state) transition function satisfying 6(q,mn)= 
5(S(q,m),n) for each q G Q and for m,n G S. Fo호 p,q C Q and m 6 S, 
机p,m) = q is interpreted by the fact that a state machine (system), 
being in state p, goes to the state q if scanning the input symbol m, 
and we diagram it as

回-%叵]and 回& denotes ^(p,m) = p.
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The set generated by S under the concatenation is a free monoid over 
S, that is, the set of all strings of finite length of members of S, if 
including the empty string e such that 6(q,e) = q for each q G Q. We 
will denote 난le free monoid by S*, = S* — (e} and = S U {e).
The transition function 6 can be extended to Q x S* if for each x)y 
€ S* and q e Q, S(q,xy) = ^(q,x),y) and 机q,€)= q・

We define an automaton by a triple A = (Q£0) where S is the 
extended transition. A triple B = (T,S,^) is called a subautomaton 
of A (denoted by B《A) if T U Q and 61 is the restriction 6jrxE* 
(we use 8 for the 8 = without confusions). For R C Q, the 융et 
S(R) = {^(r,x) : r G R, x € S*} is called the set of successors of R 
C Q and cr(R) = {q £ Q : 6(q,x) e R, x e S*} is called the source of 
R. <R> = is called the automaton generated by R・ The
symbols defined in. the above, A, Q (or Qa), S*, S°, 8 (or 力4), a 
(or crA), e, <R> and <{r}> (or <r>) will be used generically without 
ambiguity and specification.

Let B = (R爲”')《A = (Q£0) and R U Q. The following can be 
found in [1,2,3,10].

(1) A is discrete if for each q £ Q #(q) = {q}.
(2) A is reflexive if for each q € Q, there is an x 6 S* such that 

x 尹 € and 5(q,x) = q.
(3) B《A is called separated if 5(Q—R) D R = 0.
(4) B is said to be connected if B has no separated proper sub

automata.
(5) A is strongly connected if for any p,q € Q, there is an x G E* 

such that $(p,x) = q.

Definition 2.1. For A = (Q,S,6) and R c Q,
(1) 任(R) (or ka(R)) = {3(q,m) : q € R, m £ S°} is called the set 

of immediate successors of R・
(2) k*(R) (or k%(R)) = {q € Q ： 6(q,m) G R, m G S°} is called 

the immediate source of R.

The set functions, k and «*, are different from functions 6 and a 
which are known in [4,6]. Intuitively, the concept of k* (resp. k) is 
based on one of an immediate predecessor (resp. successor). Each of 
k(R) and k*(R) is a small part of 6(R) and a(R), respectively. Fo호 p,q 
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G Q, q G K*({p)) (resp. q G K({p})) is interpreted by the fact that 
a state q is an immediate predecessor (resp. successor) of a state p, 
equivalently,- p can be reached (resp. can reach) from q by one of input 
symbols including €. Actually, k(R) = R U {6(q,m) : q G Q, m G S) 
and k*(R) = (q € Q ： S(q,m) G R, m G S). k and k* are the small 
parts of 6 and a, respectivly.

Theorem 2.2. Let A = and R,T c Q. Then
(1) K，(0) = 0 ； K*(0) = 0.
(2) R C k.(R) ; R C
(3) k(R U T) = k(R) U k(T);濯‘(R U T) = ^(R) U 甘(T).

Corollary 2.3. Let A = and R,T c Q. Then
(1) IfRc T, then k(R) C k(T) ; k*(R) C k*(T).
(2) k(r n t)c k(R) n k(t)； ^(R n 꼬) u ^(R) n ^(T).
(3) k(R) C ”k(T));疽(R) G ^(^(T)),

Proof, They follow immediately from Lemma 1.3, since k and k* 
satisfies Axioms Cl, C2 and C3. U’s in this Corollary may not be 
replaced by =, as shown in Example 2.6, because K((p} 0 (r,s}) = 0, 
<{p}) n K({r,s}) = {r}, K(K({p})) = Q and <{p}) = (p,q,r}.

Let A = x = niini2 ... € S* and y = . m7 6
S* for mt 6 E. Then we obtain easily that for some r G R C Q, <5(r,x) 
=p and a(r,y) = q can be expressed by the term of compositions of 心 

and k*zs, respectively, that is, 5(r,x) = k(k( ... K(r,mi), ...), 
mt) and <r(r,y) = k*(k*( ... K*(r,mi), ... ), nij-i), mj). We say that 
k(k(. .. K(r.mj )、・.・),mz—i), mz) is an exit-chain from r (denoted by 
Kl(r)) and k*(k*(.… ...), m7) is an enter-chain
into I (denoted by K*J(r)) . Each of the i and j depends on the length 
of the strings x and y and is thus not unique. The least element of zzs 
(or /s) is called the chain md&r of r. It is easy to prove that for chain 
indices i and j, 6(R) = \JreR Kl(r) and c「(R) = |JrGK ^*J(r)

THEOREM 2.4. Let. A = fQ,S,6) be an automaton. Then
(1) A is discrete iff ^(q)=广(q) for each q C Q・
(2) A is reflexive iff there is a chain index i such that Kl(q)= 

K**(q) for each q E Q.
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Proof. (1): A is discrete iff 6(q) = {q} for each q € Q. (2): 
Let A be reflexive. Then there is a nonempty string x G S* such that 
6(q,x) = q fo 흐 each q € Q. Suppose x = mi m2 whore mi, m2 E S 
without losing generality because we can prove in the same way up to 
the chain index. In order that $(q,x) = ^(q,mim2) = 5(5(q,mi))m2) 
= {q}9 either (a) 6(q,mi) = q and #(如1끄2)= q, or (b) there is a p G 
Q such that ^(q,mi) = p and <T(q,m2)= p. Hence we have 辱(q)= 
K：*1(q) in the case of (a) and K2(q) = 濯으(q) in the case of (b). The 
converse is obvious.

Note that k and k* as well as 8 and a satisfy the Axioms Cl, C2 and 
C3. Thus u is a closure operation for Q if defining u = {R t k(R)}, 
(R t k*(R)), (R t 負R)}, or {R -> cr(R)}.

DEFINITION 2.5. Let A = (Q,S,5) be an automaton and for R C 
Q let u = {R k(R)}, {R t k*(R)), {R -> 6(R)}, or (R t a(R)). 
Then the closure space (Q,u) is called a state closure space associated 
loith A (simply, a state closure space, or a state closure space with A).

EXAMPLE 2.6. Let Q = {p,q,r,s}, S = {0,1) and 8 be defined by

11 X 1
0 o 0 o
一 0,1 ■一1 0,1

and « = {R k*(R)}. Then (Q,u) is a state closure space with A = 
(Q,S,6). Note that (Q,u) is not a topological space, for u = {0, {p}, 
Ip,q}, {p,r}, {q,s}, {p,q,r}, {p,q,s}, Q}.

THEOREM 2.7. Let A = (Q^,6) be a automaton and R U Q. Then 
B = A iff k(R) = R.

Proof. Suppose B《A and let O(R) = {6(r,m): r G R, m € S}. 
Then it is enough to show that 0(R) C R since k(R) = R U O(R). Let 
q E <9( R). Then there is an m € S such that ^(r,m) = /c(r,m) = q for 
some r 6 R. Hence K(r,m) = q G R, for B <C A iff #(R) C R for any r 
€ R and x G S*. Hence O(R) C R. Conversely, suppose B = (R,S,^) 
is not a subautomaton of A, Then there is an exit-chain from some r 6 
R, which has to reach to q £ R, since 나lere is a q € 6(R) — R・ Let the 
exit-chain be k"R). Then there is mi, ..., mt G S such that K(r,mi 
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... mJ C 6(R) for the r € R. Thus there is an. mlo such that 1 < io < 
i and m』。E d(R) — R for the r € R because the exit-chain k*(R) has 
to reach to q R. Hence k(R)丰 R. It contradicts.

Theorem 2.8. Let A = (Q£,5) and u* = {R u Q ： ^(R) = R}. 
Then e(R) = R iff R is open in (Q)u*).

Proof. Since u* satisfies Cl, C2 and C3, u* is a closure operation 
for Q. Let k(R) = R. Then 代(R) Cl (Q—R) = 0. Thus there is no m g 
E° such that € Q—R for any r 6 R, that is5 r 牛 k*(Q—R) for 
each r G R. Since r is arbitrary in R, k*(Q—R) D R = 0. This means 
that k*(Q—R) C Q — R. Thus R is open in (Q,u*). Conversely, let 
R be open in (Q,u*). Then Q — R is closed iff iz*(Q—R) = Q—R iff 
k*(Q—R) = Q—R. Thus k*(Q—R) A R = 0. So 난lere is no m‘ G S° 
such that /c(r,m/) € Q — R. Thus K(r) 6 R for each r 6 R. We have 
k(R) C R.

Corollary 2.9. Let A = (Q钏仞 and W = {R u Q ： k*(R) = R}. 
Then B = 《A iff R is open in

COROLLARY 2.10. Let (Q,u^) be a state 시osure space with A = 
(Q£0) where u* = {R C Q : k*(R) = R}. Then there is B = (R^,6) 
《A such that q 6 R G N iff N is a nbd of q E Q.

Proof. It is complete if putting R = intu*(R) since k(R) — R iff R 
is open in

Theorem 2.11. Let A = (Q,犹力 audit = {R c Q : k(R) = R}. 
Then k*(R) ~ R iff R is open in (Q,u).

Proof. Proofs are similar to those of Theorem 2.8.

Corollary 2.12. Let u = {R c Q : k(R) = R} and = {R c 
Q： ^(R) = R} for A = Then

(1) k(R) = R iff R is closed in (Q,u).
(2) k^(R) — R iff R is closed in (Q9u*).

Corollary 2.13. Let B = {R,S,5)《A = (Q爲5). Ifu={Rc 
Q : k(R) = R} and u* = {Rc Q : ^(R) = R}, then R is closed (resp. 
op이七) in (Q7u) iff R is open (resp. closed) in
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Theorem 2.14. Let A = Then for each R C Q, <Q -
R>《A iff R is closed im(Qg*).

Proof, In order to use Theorem 2.6, let u = {R C Q : k(R) = R} 
and zz* = (R C Q : /c*(R) = R}. Then <Q — R> •《A iff k(Q — R) 
=Q — R by Theorem 2.6 iff Q — R is closed in (Q,u) by Corollary 
2.12 iff R is open in (Q,u) iff R is closed in (Q,w*) by Corollary 2.13 
iff k*(R) = R from Corollary 2.12 iff R is closed in (Q,zz*).

THEOREM 2.15. Let A = (Q^,8) and R G Q. R is separated iff 
R is open and closed in (Q,u*).

Proof. R is separated iff (R舄0)《A and 6(Q — R) fl R = 0 iif 
k(R) — R by Theorem 2.7 and 5(Q — R) Cl R = 0 iif R is open in 
(Q,tt*) by Theorem 2.8 and 6(Q — R) C Q — R iff Ris open in (Q,u*) 
and k*(R) = R iff R is open in (Q,u*) and R is closed in (Q,u*) by 
Corollary 2.12

Corollary 2.16. Let B = (R,Z}6)《A = Then B is
separated iff k^(R) = R.

THEOREM 2.17. A = is connected iff Q and 0 are the only 
subsets of Q which are both open and closed in (Q,u*).

Proof. A = (Q,E,6) is connected iff A has no separated proper 
subautomata iff there is no proper subset R of Q such that it is open 
and closed in (Qg*) iff Q and 0 are the only subsets of Q which are 
both open and closed in (Q,u*).

3. Homomorphisms

We define a generalized homomorpliism on an automaton.

Definition 3.1. Let A = (Q,S,5A) and B = (T,S/B)- A function 
on A to B means a mapping of Q to T and the identity mapping on S*. 
The function h : A —> B is called a homomorphism [3] if it preserves 
transitions by S*, that is, for any q € Q and for any x E S*, /i(^(q,x)) 
=%(Mq),xj.
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THEOREM 3.2. Let (Q,u) and (T,v) be state closure spaces with A 
=and B = (T,£0b)» respectively, where u = {f^(R) t R} 
and u = {§ U T :吒(S) = S}. Then f : (Q,u) —> (T,v) is continuous 
if / : A —* B is a h omomorphism

Proof. Let Y be v-closed, then Y =代宿(丫). Since /-1(Y) is u-closed 
iff u(/'~1(Y)) = y-1(Y), i.e., u(/-1(Y)) C 厂'(Y) from Lemma 1.10. 
Suppose q £ /-1(Y). It is enough to show q £ zz(/~1(Y)). Then /(q)《 

Y. Since Y = k^(Y), for any p 6 Y and m E /(q) * /c^(p,ni), thus 
f(q) $ K^(p,m). Since f preserves transitions, it contradicts. Hence 
«B(/(q),m) e Y for some m 6 S.

Example 3.3. Let Q = (p,q,r} and T = {s,t} be state closure 
spaces with closures u = {Q, 0, {p), {q), {p,q}) and v = {T, 0, {s}), 
respectively, where E = (0,1}. Defining a function h : Q —> T by 
/z(p)=s,九(q)=s and /t(r) = t, then h is continuous. Now let us examine 
two possible automata.

Case (1)
L O'1 0°

0,1 0,1
So

\0 z/ 1 T o
,_, 0
\r ; C

)

0o

,_, 0,1
LL： 0

0,1
So

S o 0 o

Then the first h is not a homomorphism although h is continuous, but 
the second h is a homomorphism. So the converse of Theorem 3.2 may 
not be true.

CONCLUSION. We have obtained functorial passages between au
tomata and state closure spaces :

(1) A reflexive automaton A = (Q,S,6) corresponds to an indis- 
cret은 closure space (Q,z).

(2) A discrete automaton A = (QE0) corresponds to the discrete 
state closure space (Q,J).
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(3) A subautomaton corresponds to an open set of (Q,u*).
(4) Any union of subautomata is a subautomata and the finite 

intersection of subautomata is also a subautomaton by Lemma 
1.3 and by Corollary 2.9.

(5) A connected automaton A = in the sense of automaton, 
theory corresponds to the fact that the state closure space 
(Q,u*) is connected in the sense of topology by Theorem 2.17.

(6) A a homomorphism between automata A = and B
=(T,S,6b) under the transitions 8a and 8b corresponds to a 
continuous function from (Q,u) to (T,v).
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