NORMAL HYPERSURFACE IMMERSED IN A PRODUCT OF TWO SPHERES

Shin, Yong Ho

0. Introduction

Yano[1] studied the differential geometry of $S^{n} \times S^{n}$ and proved that the (f, g, u, v, λ)-structure is naturally induced on $S^{n} \times S^{n}$ as a submanifold of codimension 2 of a $(2 n+2)$-dimensional Euclidean space or a real hypersurface of $(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$. S.-S.Eum, U-H.Ki and Y.H.Kim [2] researched partially real hypersurfaces of $S^{n} \times S^{n}$ by using the concept of k-invariance. The purpose of the present paper is devoted to study some intrinsic characters of hypersurfaces immersed in $S^{n} \times S^{n}$ and characterize global properties of them by using some intergrable condition. In section 1 , we recall the intrinsic properties of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ and obtain some algebraic relationships and structure equations of hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$. In section 2 , we define an integrable condition for the induced strucrure on a hypersurface of $S^{n} \times S^{n}$ which is called to be normal, and look into an intrinsic character of a normal k-antiholomorphic hypersurface of $S^{n} \times S^{n}$.

1. Structure equations of hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$

Let M be a hypersurface immersed isometrically in $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$ and suppose that M is covered by the system of coordinate neighborhoods $\left\{\bar{V} ; \bar{x}^{a}\right\}$, where here and in the sequel, the indices a, b, c, d, \cdots run over the range $\{1,2, \cdots, 2 n-1\}$. From the (f, g, u, v, λ)-structure defined on $S^{n} \times S^{n}$, we obtain the so-called $(f, g, u, v, w, \lambda, \mu, \nu)$-structure given by[2],

$$
\begin{equation*}
f_{b}^{e} f_{e}^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{a}, \tag{1.1}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& f_{e}^{a} u^{e}=-\lambda v^{a}+\mu w^{a}, \\
& f_{e}^{a} v^{e}=\lambda u^{a}+\nu w^{a}, \tag{1.2}\\
& f_{e}^{a} w^{e}=-\mu u^{a}-\nu v^{a}
\end{align*}
$$
\]

or, equivalently
(1.3)

$$
\begin{aligned}
& u_{e} f_{a}^{e}=\lambda v_{a}-\mu w_{a}, \quad v_{e} f_{a}^{e}=-\lambda u_{a}-\nu w_{a}, \quad w_{e} f_{a}^{e}=\mu u_{a}+\nu v_{a}, \\
& u_{e} u^{e}=1-\lambda^{2}-\mu^{2}, \quad u_{e} v^{e}=-\mu \nu, \quad u_{e} w^{e}=-\lambda \nu, \\
& v_{e} v^{e}=1-\lambda^{2}-\nu^{2}, \quad v_{e} w^{e}=\lambda \mu, \\
& w_{e} w^{e}=1-\mu^{2}-\nu^{2}
\end{aligned}
$$

where u_{a}, v_{a} and w_{a} are 1-forms associated with u^{a}, v^{a} and w^{a} respectively given by $u_{a}=u^{b} g_{b a}, v_{a}=v^{b} g_{b a}$ and $w_{a}=w^{b} g_{b a}$. By putting $f_{b a}=f_{b}^{c} g_{c a}, f_{c b}$ is skew-symmetric.
(1.4) $k_{c}^{e} k_{e}^{a}=\delta_{c}^{a}-k_{c} k^{a}$,
(1.5) $k_{c}^{e} k_{e}=-\alpha k_{c}$,
(1.6) $k_{\mathrm{e}} k^{e}=1-\alpha^{2}$.
(1.7) $k_{c}^{e} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=k_{c} w^{a}-w_{c} k^{a}$,
(1.8) $k_{c}^{e} w_{e}+f_{c}^{e} k_{e}=-\alpha w_{c}$.
(1.9) $k_{c}^{e} u_{e}=-v_{c}-\mu k_{c}, \quad k_{c}^{e} v_{e}=-u_{c}-\nu k_{c}$,
(1.10) $k_{e} u^{e}=-\nu-\alpha \mu, \quad k_{e} v^{e}=-\mu-\alpha \nu$.
(1.11) $\nabla_{d} l_{c b}-\nabla_{c} l_{d b}=k_{d} k_{c b}-k_{c} k_{d b}$.
(1.12) $\nabla_{c} f_{b}^{a}=-g_{c b} u^{a}+\delta_{c}^{a} u_{b}-k_{c b} v^{a}+k_{c}^{a} v_{b}-l_{c b} w^{a}+l_{c}^{a} w_{b}$,
(1.13) $\nabla_{c} u_{b}=\mu l_{c b}-\lambda k_{c b}+f_{c b}$,
(1.14) $\nabla_{c} v_{b}=k_{c}^{e} f_{e b}-k_{c} w_{b}+\nu l_{c b}+\lambda g_{c b}$,
(1.15) $\nabla_{c} w_{b}=-\mu g_{c b}-\nu k_{c b}+k_{c} v_{b}-l_{c e} f_{b}^{e}$,
(1.16) $\nabla_{c} \lambda=-2 v_{c}, \nabla_{c} \mu=w_{c}-\lambda k_{c}-l_{c e} u^{e}, \nabla_{c} \nu=k_{c e} w^{e}-l_{c e} v^{e}$,
(1.17) $\nabla_{c} k_{b}^{a}=l_{c b} k^{a}+l_{c}^{a} k_{b}$,
(1.18) $\nabla_{c} k_{b}=-k_{b a} l_{c}^{a}+\alpha l_{c b}$,
(1.19) $\nabla_{c} \alpha=-2 l_{c e} k^{e}$.

From these structure equations, we can easily see that the l-form k_{c} is the third fundamental tensor when M is considered as a submanifold of codimension 2 immersed in $S^{2 n+1}(1)$.

Finally, we mention the following remark and theorems for later use.
Remark 1 [3]. If $\lambda^{2}+\mu^{2}+\nu^{2}=1$ on the hypertsurface M, we see that

$$
\mu=0, \nu=\operatorname{constant}(\neq 0), v_{c}=0 \quad \text { and } \quad \alpha=0 .
$$

And if the function λ vanishes on some open set, then we have $v_{c}=0$ and $\mu=0$. Moreover, if the 1 -form u_{b} is zero on an open set in M, then (1.13) imples $f_{c b}=0$, which contradicts $n>1$ as is shown above.

Theorem $1.2[3]$. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. If M is a minimal hypersurface with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure, then M is a Sasakian C-Eienstein manifold.

Theorem $1.3[3]$. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ ($n>1$) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. If M is minimal, then M as a submanifold of codimension 3 of a $(2 n+2)$ dimensional Euclidean space $E^{2 n+2}$ is an intersection of a complex cone with generator C and a $(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$.

2. Antiholomorphic hypersurfaces with normal ($f, g, u, v, w, \lambda, \mu, \nu$ structure

We now define a tensor field S of type $(1,2)$ as follows :

$$
\begin{aligned}
S_{c b}^{a}=\left[f,\left.f\right|_{c b} ^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}\right. & +\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v_{a} \\
& +\left(\nabla_{c} w_{b}-\nabla_{b} w_{c}\right) w^{a},
\end{aligned}
$$

where $[f, f]_{c b}^{a}$ is the Nijenhuis tensor formed with f_{c}^{a}, that is,

$$
[f, f]_{c b}^{a}=f_{c}^{e} \nabla_{e} f_{b}^{a}-f_{b}^{e} \nabla_{e} f_{c}^{a}-\left(\nabla_{c} f_{b}^{e}-\nabla_{b} f_{c}^{e}\right) f_{e}^{a}
$$

The ($f, g, u, v, w, \lambda, \mu, \nu$)-structure is said to be normal [4] if $S_{c b}^{a}$ vanishes identically.

In ths section, we assume that the hypersurface M with $(f, g, u, v, w, \lambda, \mu, \nu)$: structure of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ is nomal. Then we have

$$
\begin{aligned}
f_{c}^{e} \nabla_{e} f_{b}^{a}-f_{b}^{e} \nabla_{e} f_{c}^{a}-\left(\nabla_{c} f_{b}^{e}-\nabla_{b} f_{c}^{e}\right) f_{e}^{a} & +\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a} \\
& +\left(\nabla_{c} w_{b}-\nabla_{b} w_{c}\right) w^{a}=0 .
\end{aligned}
$$

because of (1.7) and (1.14).
Substituting (1.12),(1.13) and (1.15) into the last equation, we find

$$
\begin{align*}
T_{a c} w_{b}-T_{a b} w_{c} & =\left(k_{a e} f_{b}^{e}+k_{b e} f_{c}^{e}\right) v_{c}-\left(k_{a e} f_{c}^{e}+k_{c e} f_{a}^{e}\right) v_{b} \tag{2.1}\\
& -\left(k_{c e} f_{b}^{e}\right) v_{a}-\left(k_{c} v_{b}-k_{b} v_{c}\right) w_{a},
\end{align*}
$$

where

$$
\begin{equation*}
T_{c b}=l_{c e} f_{b}^{e}+l_{b e} f_{c}^{e} \tag{2.2}
\end{equation*}
$$

Contradicting a and b in (2.1), we get

$$
\begin{equation*}
T_{\mathrm{ce}} w^{e}=(\theta+2 \lambda) v_{c}+\lambda \mu k_{c}-2 \nu k_{c e} w^{e}, \tag{2.3}
\end{equation*}
$$

where we have used (1.2), (1.3), (1.9) and $\theta=k_{e} w^{e}$.
If we transvect (2.1) with w^{b} and use (1.2),(1.3) and (2.3) we obtain

$$
\begin{aligned}
& \left(1-\mu^{2}-\nu^{2}\right) T_{a c}=\left\{(\theta+2 \lambda) v_{a}+\lambda \mu k_{a}-2 \nu k_{a e} w^{e}\right\} w_{c} \\
& -k_{a e}\left(\mu u^{e}+\nu v^{e}\right) v_{c}+k_{c e}\left(\mu u^{e}+\nu v^{e}\right)+k_{b e} w^{b} f_{a}^{e} v_{c} \\
& +k_{b e} w^{b} f_{c}^{e} v_{a}-\lambda \mu\left(k_{a e} f_{c}^{e}+k_{c e} f_{a}^{e}\right)-\left(\lambda \mu k_{c} w_{a}-\theta v_{c} w_{a}\right)
\end{aligned}
$$

or, taking account of (1.9), we get

$$
\begin{align*}
& \left(1-\mu^{2}-\nu^{2}\right) T_{a c}+\lambda \mu\left(k_{a e} f_{c}^{e}+k_{c e} f_{b}^{e}\right)-k_{b e} w^{b}\left(f_{a}^{e} v_{c}+f_{c}^{e} v_{a}\right) \tag{2.4}\\
& \left.=\theta\left(v_{a} w_{c}+v_{c} w_{a}\right)+2 \lambda v_{a} w_{c}+\lambda \mu\left(k_{a} w_{c}-k_{c} w_{a}\right)-2 \nu\left(k_{a e} w^{e}\right) w_{c}\right) \\
& +\nu\left(u_{a} v_{c}-u_{c} v_{a}\right)+\left(\mu^{2}+\nu^{2}\right)\left(k_{a} v_{c}-k_{c} v_{a}\right) .
\end{align*}
$$

Taking the skew-symmetric part of this with respect to a and c we get

$$
\begin{gather*}
\nu\left\{w_{c}\left(k_{b e} w^{e}\right)-w_{b}\left(k_{c e} w^{e}\right)\right\}=\lambda\left(v_{b} w_{c}-v_{c} w_{b}\right)+\lambda \mu\left(k_{b} w_{c}-k_{c} w_{b}\right) \tag{2.5}\\
+\nu\left(u_{b} v_{c}-u_{c} v_{b}\right)+\left(\mu^{2}+\nu^{2}\right)\left(k_{b} v_{c}-k_{c} v_{b}\right) .
\end{gather*}
$$

On the other side, transvecting (1.8) with w^{b} and considering (1.2),(1.3) and (1.10), we have

$$
\begin{equation*}
k_{c b} w^{c} w^{b}+\alpha+2 \mu \nu=0 \tag{2.6}
\end{equation*}
$$

Transvection of w^{c} to (2.5) gives

$$
\begin{align*}
\nu\left(1-\mu^{2}-\nu^{2}\right) k_{b e} w^{e}= & \lambda \mu \nu u_{b}+\lambda \mu k_{b}+\left\{\lambda\left(1-\mu^{2}\right)-\theta\left(\mu^{2}+\nu^{2}\right)\right\} v_{b} \tag{2.7}\\
& -\left\{\alpha \nu+2 \mu \nu^{2}+\lambda^{2} \mu+\lambda \mu \theta\right\} w_{b},
\end{align*}
$$

where we have used (1.3) and (2.6).
If we transvect (2.7) with u^{b} and make use of (1.3), (1.9), it means

$$
\begin{equation*}
\left.\mu \nu \theta\left(1+\lambda^{2}\right)=\lambda(\alpha+\mu \nu) \mu^{2}-\nu^{2}\right) . \tag{2.8}
\end{equation*}
$$

Applying also (2.7) with v^{b} and k^{b} successively, we obtain respectively

$$
\begin{align*}
& \theta\left(\lambda^{2} \nu^{2}-\mu^{2}\right) \\
& =\lambda\left(-1+\lambda^{2}+2 \mu^{2}+2 \nu^{2}+2 \alpha \mu \nu-\nu^{4}+\mu^{2} \nu^{2}\right), \tag{2.9}\\
& \quad \mu \theta\left(\lambda^{2}+\nu^{2}-\mu^{2}+\lambda \theta\right)=\lambda\left(\mu^{3}-\alpha \nu-\mu \nu^{2}-\mu \alpha^{2}\right) \tag{2.10}
\end{align*}
$$

with the aid of (1.3),(1.5) and (1.9).
Combining (2.8) and (2.9), we can easily verify that

$$
\begin{align*}
& \alpha\left(\lambda^{2} \nu^{4}+\mu^{4}+\mu^{2} \nu^{2}+\lambda^{2} \mu^{2} \nu^{2}\right) \\
& +\mu \nu\left(-1+2 \mu^{2}+2 \nu^{2}+\lambda^{4}+2 \mu^{2} \lambda^{2}+2 \lambda^{2} \nu^{2}\right)=0 . \tag{2.11}
\end{align*}
$$

First of all, we prove

Lemma 2.1. Let M be a hypersurface with normal $(f, g, u, v, w, \lambda, \mu, \nu)$ structure of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$. Then the function $\alpha^{2}-1$ is non-zero almost everywhere.

Proof. If there exists an open interior M_{α} in $\left\{p \in M \mid \alpha^{2}(p)=1\right\}$, then from (1.6) we see that $k^{c}=0$ on M_{α}, which together with (1.8) gives $k_{c e} w^{e}=-\alpha w_{c}$.

Thus, (2.5) leads to

$$
\lambda\left(v_{b} w_{c}-v_{c} w_{b}\right)+\nu\left(u_{b} v_{c}-u_{c} v_{b}\right)=0
$$

on M. By transvecting $v^{b} w^{c}$ and using (1.23), it follows that

$$
\lambda\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)=0
$$

on the set. But, in a consequence of Remark 1 in section $1, \lambda^{2}+\mu^{2}+$ $\nu^{2} \neq 1$ on M_{α}. Consequently we have the function λ vanishes on M_{α}. So we should have $v_{c}=0$ on M_{α}. Hence (1.3) yields $\nu^{2}=1$ and $\mu=0$ on the set. Thus, (1.10) gives $\alpha=0$. It contradicts the definition of the set M_{α}. This completes the proof.

Lemma 2.2. Let M be a k-antiholomorphic hypersurfaces with normal $(f, g, u, v, w, \lambda, \mu, \nu)$-structure of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$. Then we have the function μ vanishes identically.

Proof. Since the hypersurface M is k-antiholomorphic, that is, the function α vanishes on $M_{2}(2.8)-(2.11)$ reduces respectively to

$$
\begin{equation*}
\mu \nu \theta\left(1+\lambda^{2}\right)=\lambda \mu \nu\left(\mu^{2}-\nu^{2}\right) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\theta\left(\lambda^{2} \nu^{2}-\mu^{2}\right)=\lambda\left(-1+\lambda^{2}+2 \mu^{2}+2 \nu^{2}-\nu^{4}+\mu^{2} \nu^{2}\right) \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
\mu \theta\left(\nu^{2}+\lambda^{2}-\mu^{2}+\lambda \theta\right)=\lambda \mu\left(\mu^{2}-\nu^{2}\right) \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\mu \nu\left(-1+2 \mu^{2}+2 \nu^{2}+\lambda^{4}+2 \mu^{2} \lambda^{2}+2 \lambda^{2} \nu^{2}\right)=0 \tag{2.15.}
\end{equation*}
$$

If $(\mu \nu)(p) \neq 0$ for some point p of M, then the expresion above can be written as

$$
\begin{align*}
& \theta=\left(\mu^{2}-\nu^{2}\right) /\left(1+\lambda^{2}\right) \tag{2.16}\\
& \theta\left(\nu^{2}+\lambda^{2}-\mu^{2}+\lambda \theta\right)=\lambda\left(\mu^{2}-\nu^{2}\right) \tag{2.17}\\
& 2 \mu^{2}+2 \nu^{2}+\lambda^{4}+2 \mu^{2} \lambda^{2}+2 \lambda^{2} \nu^{2}=1 \tag{2.18}
\end{align*}
$$

for such p of M. Substituting (2.16) into (2.17), we find

$$
\left(\mu^{2}-\nu^{2}\right)\left(1+\lambda^{2}+\mu^{2}-\nu^{2}\right)=0
$$

at the point p. Comparing (2.18) with the last expression, we have

$$
\left(\mu^{2}-\nu^{2}\right)\left(3 \mu^{2}+\nu^{2}+\lambda^{2}+\lambda^{4}+2 \mu^{2} \lambda^{2}+2 \lambda^{2} \nu^{2}\right)=0
$$

at $p \in M$. Since $(\mu \nu)(p) \neq 0$, it follows that $\mu^{2}-\nu^{2}=0$ at the point. so (2.16) leads to $\theta(p)=0$ and hence (2.13) means $\lambda\left(-1+\lambda^{2}+4 \mu^{2}\right)=0$ at the point.

Differentiating $\lambda^{2}\left(-1+\lambda^{2}+4 \mu^{2}\right)=0$ covariantly and taking account of (1.16) and the orginal expression, we find

$$
2 \mu \lambda\left(w_{c}-\lambda k_{c}-l_{c e} u^{e}\right)=\lambda^{2} v_{c}
$$

at $p \in M$. If we transvect this with k^{c} and make use of (1.10) and the fact that $\theta(p)=\alpha(p)=0$, we get $\lambda \mu=0$ at the point, which is contradictory because of Remark 1. Thus $\mu \nu=0$ on the whole space M. So (2.13) and (2.14) becomes respectively

$$
\begin{align*}
& \theta\left(\lambda^{2} \nu^{2}-\mu^{2}\right)=\lambda\left(-1+\lambda^{2}+2 \mu^{2}+2 \nu^{2}-\nu^{4}\right) \tag{2.19}\\
& \mu \theta\left(\lambda^{2}-\mu^{2}+\lambda \theta\right)=\lambda \mu^{3} \tag{2.20}
\end{align*}
$$

We know consider a set given by

$$
M_{0}=\{p \in M \mid \mu(p) \neq 0\}
$$

M_{0} is an open set in M. Then, the function ν should be vanish on M_{0} because of the fact $\mu \nu=0$ on M. Hence (2.4), (2.19) and (2.20) can be respectively written as on M_{0}
$\left(1-\mu^{2}\right) T_{a c}+\lambda \mu\left(k_{a e} f_{c}^{e}+k_{c e} f_{a}^{e}\right)-k_{b e} w^{b}\left(f_{a}^{e} v_{c}+f_{c}^{e} v_{b}\right)$
$=\theta\left(v_{a} w_{c}+v_{c} w_{a}\right)+2 \lambda v_{a} w_{c}+\lambda \mu\left(k_{a} w_{c}-k_{c} w_{a}\right)+\mu^{2}\left(k_{a} v_{c}-k_{c} v_{a}\right)$,

$$
\begin{align*}
& \theta \mu^{2}=\lambda\left(1-\lambda^{2}-2 \mu^{2}\right) \tag{2.22}\\
& \lambda \theta(\lambda+\theta)-\theta \mu^{2}=\lambda \mu^{2} \tag{2.23}
\end{align*}
$$

Transvecting (2.21) with $k^{a} k^{c}$ and taking account of (1.5),(1.8),(1.10),(1.19 and (2.2), we find

$$
\mu\left(k_{b e} k_{a}^{e}\right) w^{b} w^{a}=-\mu \theta^{2}-\mu \lambda \theta
$$

on the set because of $\alpha=0$, or using (1.3) with $\nu=0$ and (1.4),

$$
\mu\left(1-\mu^{2}-\theta^{2}\right)=-\mu \theta^{2}-\mu \lambda \theta
$$

Thus, it follows that

$$
\begin{equation*}
1+\lambda \theta-\mu^{2}=0 \tag{2.24}
\end{equation*}
$$

on M_{0}.
Comparing (2.22), (2.23) and (2.24), we get on M_{0}

$$
\lambda(\theta+\lambda)^{2}=0
$$

or, using (2.22)

$$
\lambda^{2}\left(1-\lambda^{2}-\mu^{2}\right)=0
$$

Taking account of Remark 1 in section 1 , the function μ must be vanish and consequently the set M_{0} is void. Therefore our assertion is true.

Lemma 2.3. Under the same assumptions as those stated in Lemma 2.2, we have $\lambda=\theta=0$ on M.

Proof. Since the function μ vanishes identically, we see from the second equation of (1.18) that

$$
\begin{equation*}
w_{c}-\lambda k_{c}-l_{c e} u^{e}=0 \tag{2.25}
\end{equation*}
$$

If we transvect k^{c} to this and make use of (1.6) and (1.19) with $\alpha=0$, it means

$$
\begin{equation*}
\theta=\lambda \tag{2.26}
\end{equation*}
$$

Thus, (2.19) with $\mu=0$ gives

$$
\lambda\left(\nu^{4}-2 \nu^{2}+\lambda^{2} \nu^{2}-\lambda^{2}+1\right)=0
$$

that is,

$$
\lambda\left(\nu^{2}-1\right)\left(\lambda^{2}+\nu^{2}-1\right)=0
$$

Owing to Remark 1, it implies

$$
\begin{equation*}
\lambda^{2}+\nu^{2}=1 \tag{2.27}
\end{equation*}
$$

on M and hence $v_{c}=0$ because of (1.3). Hence λ and ν are both constant because of Remark 1.

Therefore, the third equation of (1.16) yields

$$
\begin{equation*}
k_{c e} w^{e}=0 \tag{2.28}
\end{equation*}
$$

So (1.8) with $\alpha=0$ leads to

$$
f_{c e} k^{e}=0
$$

Transvecting f_{δ}^{c} means

$$
\begin{equation*}
k_{b}=\lambda w_{b}-\nu u_{b} \tag{2.29}
\end{equation*}
$$

with the help of (1.1), (1.10) with $\alpha=0$ and (2.26). Hence, (2.25) reduces to

$$
\begin{equation*}
l_{c e} u^{e}=\left(1-\lambda^{2}\right) w_{c}+\lambda \nu u_{c} \tag{2.30}
\end{equation*}
$$

If we take account of (2.28),(2.29), Lemma 2.2 and the fact that $v_{c}=0,(2.4)$ turned out to be

$$
\left(1-\nu^{2}\right) T_{c b}=0,
$$

or,equivalently

$$
\begin{equation*}
\lambda\left(l_{c e} f_{b}^{e}+l_{b e} f_{c}^{e}\right)=0 \tag{2.31}
\end{equation*}
$$

where we have used (2.2) and (2.27). We now suppose that the function λ does not vanish at some point p of M, then (2.31) means

$$
\begin{equation*}
l_{c e} f_{b}^{e}+l_{c e} f_{b}^{e}=0 \tag{2.32}
\end{equation*}
$$

at the point. Transvecting (2.32) with f_{a}^{b} and making use of (2.30), we find

$$
-l_{c b}+\left(1-\lambda^{2}\right) w_{c} u_{b}+\lambda \nu u_{c} u_{b}+\left(l_{c e} w^{e}\right) w_{b}+l_{d e} f_{c}^{e} f_{b}^{d}=0
$$

from which, taking the skew-symmetric part and using (2.27), we have

$$
\begin{equation*}
\left(l_{c e} w^{e}\right) w_{b}-\left(l_{b e} w^{e}\right) w_{c}+\nu^{2}\left(w_{c} u_{b}-w_{b}-w_{b} u_{c}\right)=0 \tag{2.33}
\end{equation*}
$$

at the point.

If we trnsvect w^{6} to the last relationship and use (1.3) and (2.27), then

$$
\begin{equation*}
\lambda^{2} l_{c e} w^{e}=\left\{l_{d e} w^{d} w^{e}+\lambda \nu^{3}\right\} w_{c}+\lambda^{2} \nu^{2} u_{c} \tag{2.34}
\end{equation*}
$$

at $p \in M$ because of $\mu=0$. On the other side, by transvecting (2.29) with l_{c}^{b} and considering (1.19) with $\alpha=0$, we obtain

$$
\lambda l_{c e} w^{e}-\nu l_{c e} u^{e}=0,
$$

which together with (2.30) and (2.34) gives

$$
l_{c \mathrm{ce}} w^{c} w^{e}=0
$$

at the point. Thus (2.34) becomes

$$
\begin{equation*}
\lambda l_{c e} w^{e}=\nu^{3} w_{c}+\lambda^{2} u_{c} \tag{2.35}
\end{equation*}
$$

because the function λ does not vanish at p. Differentiating (2.29) covariantly and taking account of (1.13),(1.15) and (1.18), we get

$$
\begin{equation*}
k_{b e} e_{c}^{e}=\lambda l_{c e} f_{b}^{e}+\nu f_{c b} \tag{2.36}
\end{equation*}
$$

at $p \in M$, where we have used the fact that $\alpha=0, \lambda$ and ν are constant. If we differentiate (2.35) covariantly, we find

$$
\lambda\left(\nabla_{c} l_{h e}\right) w^{e}+\lambda l_{b}^{e} \nabla_{\mathrm{c}} w_{e}=\nu^{3} \nabla_{\mathrm{c}} w_{b}+\lambda \nu^{2} \nabla_{\mathrm{c}} u_{b}
$$

at the point. Since λ and ν are constant, which togrther with (1.13) and (1.15) gives

$$
\begin{aligned}
& \lambda\left(\nabla_{c} l_{b e}\right) w^{e}+\lambda l_{b}^{e}\left(-\nu k_{c e}-l_{c a} f_{e}^{a}\right) \\
& =\nu^{3}\left\{-\nu k_{c b}-l_{c e} f_{b}^{e}\right\}+\lambda \nu^{2}\left\{-\lambda k_{c b}+f_{c b}\right\}
\end{aligned}
$$

because $\mu=0$, or taking the skew-symmetric part and using (1.11), (2.28) and (2.32),

$$
\lambda \nu l_{b e} k_{c}^{e}+\lambda l_{b e} l_{c a} f^{e a}=\nu^{3} l_{c e} f_{b}^{e}-\lambda \nu^{2} f_{c b}
$$

at $p \in M$. Subsituting (2.36) into this, we find at the point

$$
\lambda l_{e}^{a} l_{c a} f_{b}^{e}=\nu l_{c e} f_{b}^{e}
$$

with the aid of (2.32). If we transvect the last expression with $f^{c b}$ and make use of (1.1) with $v_{c}=0$, we get at $p \in M$

$$
\lambda l_{e}^{a} l_{c a}\left(g^{e c}-u^{e} u^{c}-w^{e} w^{c}\right)=\nu l_{c e}\left(g^{e c}-u^{e} u^{c}-w^{e} w^{c}\right)
$$

which together with (2.30) and (2.35) yield

$$
\lambda l_{c b} l^{c b}=\nu l_{e}^{e}
$$

Since $v_{c}=0,(1.14)$ gives

$$
\nu l_{e}^{e}=-2(n-1) \lambda
$$

Thus, the last two relationships mean

$$
\lambda\left\{l_{c b} l^{c b}+2(n-1)\right\}=0
$$

at $p \in M$. So the set M_{0} must be void. Consequently the function λ vanishes identically and hence $\theta=0$ on M. This completes the proof of the Lemma.

Combining Theorem $1.2,1.3$ with Lemma 2.3, we conclude:
THEOREM 2.4. Let M be a k-anyiholomorphic hypersurfaces with nomal $(f, g, u, v, w, \lambda, \mu, \nu)$-structure of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>1)$. Then M is a minimal Sasakian C-Einstein manifold.

Moreover, M as a submanifold of codimension 3 of a Euclidean $(2 n+2)$-space is an intersection of a complex cone with generator C and a $(2 n+1)$-sphere $S^{2 n+1}(1)$.

Lemma 2.5. Let M be a hypersurface with normal $(f, g, u, v, w, \lambda, \mu, \nu)$ structure of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$. If the function θ vanishes identically. then M is k-antiholomorphic.

Proof. Since $\theta=0$ on $M,(2.8)-(2.10)$ reduce respectively to be

$$
\begin{equation*}
\lambda(\alpha+\mu \nu)\left(\mu^{2}-\nu^{2}\right)=0, \tag{2.37}
\end{equation*}
$$

$$
\begin{equation*}
\lambda\left(-1+\lambda^{2}+2 \mu^{2}+2 \nu^{2}+2 \alpha \mu \nu-\nu^{4}++\mu \nu^{2}\right)=0 \tag{2.38}
\end{equation*}
$$

$$
\begin{equation*}
\lambda\left(\mu^{2}-\alpha \nu-\mu \nu^{2}-\alpha^{2} \mu\right)=0 . \tag{2.39}
\end{equation*}
$$

From (2.37) and (2.39), we have

$$
\begin{equation*}
\lambda(\nu+\alpha \mu) a(\alpha+\mu \nu)=0 . \tag{2.40}
\end{equation*}
$$

If we suppose that the function $\alpha(\alpha+\mu \nu) \neq 0$ for some point p of M, then $\lambda(\nu+\alpha \mu)=0$ at the point. By the definition of the function λ and Remark 1, it can not vanish at $p \in M$, So we have $\nu+\alpha \mu=0$ at $p \in M$. Thus (2.37) reduces to

$$
\lambda \mu^{2}\left(1-\alpha^{2}\right)(\alpha+\mu \nu)=0
$$

and hence $\lambda\left(1-\alpha^{2}\right)=0$ at the point.
Therefore, it follows that $\mu(p)=0$ and consequently $\nu(p)=0$ because of Lemma 2.1. So (2.38) gives $\lambda\left(1-\lambda^{2}\right)=0$ at the point, which is contrdictory by virtue of Remark 1 . Thus, we have $\alpha(\alpha+\mu \nu)=0$ on the whole space M. In the next place, we consider a set given by

$$
N_{0}=\{p \in M \mid \alpha(p) \neq 0\} .
$$

Then N_{0} is an open set in M. We have

$$
\begin{equation*}
\alpha+\mu \nu=0 \tag{2.41}
\end{equation*}
$$

on N_{0}. Therefore (2.49) implies

$$
\lambda \mu\left(\mu^{2}-\alpha^{2}\right)=0
$$

on ths set. Since the function λ cannot be zero, it foliows from (2.41) that $\mu^{2}\left(1-\nu^{2}\right)=0$ and hence $1-\nu^{2}=0$ on N_{0}. Therefore, the last relationship of (1.3) gives $\mu(p)=0$ for $p \in N_{0}$. Consequently (2.41) yields $\alpha=0$ on N_{0}, which is contradictory. Hence the hypersurface is k-antiholomorphic. Thus, Lemma 2.5 is proved.

According to Lemma 2.3 and Lemma 2.5, we can state :
Theorem 2.6. Let M be a hypersurface with normal ($f, g, u, v, w, \lambda, \mu, \nu$)structure of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$. The hypersurface M is k-antiholomorphic if and only if the vector w^{a} and k^{a} are mutually orthogonal.

From the Theorem 2.4 and Theorem 2.6, we have immediately :
Corollary 2.7. Let M be a hypersurface with normal $(f, g, u, v, w, \lambda, \mu, \nu$ structure of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>1)$. If the vector w^{a} and k^{a} are mutually orthogonal, then M is the same type as that of Theorem 2.4.

References

1. Yano,K., Differential geometry of $S^{n} \times S^{n}$, J Diff Geo 8 (1973), 181-206
2. Eum,S.-S.,U-H.KI and Y.H Kim, On hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$, J Korean Math Soc. 18 (1982), 109-122.
3 Shin,Yong Ho, Structure of a Hypersurface mmersed in a product of two spheres, Püsan Kyongnam Math. J. 11(No1) (1995), 87-113
4 Ki,U-H ,J S Pak and H B Suh, $O_{n}\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-structures, Kōdai Math.Sem. Rep. 26 (1975), 160-175.

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

[^0]: Received November $\mathbf{1 0 , 1 9 9 5}$

