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NORMAL HYPERSURFACE IMMERSED
IN A PRODUCT OF TWO SPHERES

SHIN,YonG Ho

0. Introduction

Yano[1] studied the differential geometry of $" x ™ and proved that
the (f, g, u,v, A)-structure is naturally induced on S™ x S™ as a sub-
manifold of codimension 2 of a (2n + 2)-dimensional Euclidean space
or a real hypersurface of (2n + 1)-dimensional unit sphere $2"+1(1).
5.-S.Eum, U-H.Ki and Y.H.Kim [2] researched partially real hyper-
surfaces of §® x §™ by using the concept of k-invariance. The pur-
pose of the present paper is devoted to study some intrinsic charac-
ters of hypersurfaces immersed in §® x S§™ and characterize global
properties of them by using some intergrable condition. In section 1,
we recall the intrinsic properties of $*(1/v/2) x §*(1/v/2) and obtain
some algebraic relationships and structure equations of hypersurfaces
of §™(1/V2) x $7(1/v/2). In section 2, we define an integrable condi-
tion for the induced strucrure on a hypersurface of S™ x 5" which is
called to be normal, and look into an intrinsic character of a normal
k-antiholomorphic hypersurface of S™ x S™.

1. Structure equations of hypersurfaces of $"(1/v/2)xS"(1/v/2)

Let M be a hypersurface immersed isometrically in 5*(1/v/2) x
$°(1/v/2) and suppose that M is covered by the system of coordi-
nate neighborhoods {V;z°%}, where here and in the sequel, the in-
dices a,b,c,d,--- run over the range {1,2,---,2n — 1}. From the
(f,9,u,v, A)-structure defined on §" x S®, we obtain the so-called
(f,9,u,v,w, A, u, v)-structure given by[2],

(1.1) Fo e = =85 + upu® + vpv® + wpw,
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fou® = —2® + pw®,
(1.2) foo® = du® + vw®,

&, ..€ _ ) a4
few® = —pu® ~vo

or, equivalently

(1.3)
uefae = )&'Ua — {Wg, vef: = "’\ua - Vg, wef: = pUg + Vg,
teu® =1 — A% — p?, wv® = —uy, uw® = —Jv,

vev® =122 — 2, wpw® = Ay,

wew® =1—p? — *

where u,, v, and w, are 1-forms associated with %, v* and w* respec-
tively given by u, = u®gy,, vo = v’gs, and w, = wbg,,. By putting
foa = ffGca, feb 1 skew-symmetric.

(1.4) kokS = 62 — k.k°,
(1.5) kike = —ake,
(1.6} kek® =1 — o2,
(1.7) kSfE + fEkS = kow® — wek®,
(1.8) kfw, + féke = —aw,.
(1.9) kjue = —v, — pke,  kfve = —u. — vk,
(1.10) keu® = —v — ap, kv =—p—av.
(1.11) Vgl — Vilay = kgkey — kckas.
(1.12) V. fe = —gapu® + 6oup — kapv® + kavp — lpw® + IZws,
(1.13) Vouy = pley — ke + fob,
(1.14) Vovy = kS fep — kewy + vl + Ages,
(1.15) Vewy = —pges — vkey + kevs — Lee f§,
(1.16) V. A = —2u,, Vep = we — Ake — leetu®, Vv = ke w® — I,0°,
(1.17) V k§ = 1o k® + 1%k,
(1.18) V. ky = —kpal® + alyy,
(1.19) Vea = —21,.k*.
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From these structure equations, we can easily see that the 1-form %,
is the third fundamental tensor when M is considered as a submanifold
of codimension 2 immersed in $2"*1(1).

Finally, we mention the following remark and theorems for later use.

REMARK 1 [3]. If A2 4 u® + v? = 1 on the hypertsurface M, we see
that
=0, v=constant(# 0), v. =0 and a=0.
And if the function A vanishes on some open set, then we have v, =0

and g = 0. Moreover, if the 1-form uy is zero on an open set in M,
then (1.13) imphes f. = 0, which contradicts n > 1 as is shown above.

THEOREM 1.2[3]. Let M be a hypersurface of S*(1/v/2)xS™(1/v/2)
with (f, g,u,v,w, \, u, v)-structure satisfying A2 + p®> +v? = 1. If M
is a minimal hypersurface with (f, g,u,v,w, A, g, v)-structure, then M
is a Sasakian C-Eienstein manifold.

THEOREM 1.3 [3]. Let M be a hypersurface of S*(1/v/2)xS™(1//2)
(n > 1) with (f,g,u,v,w, A, i, v)-structure satisfying A2 + p% + 0% = 1.
If M is minimal, then M as a submanifold of codimension 3 of a (2n+2)-

dimensional Euclidean space E*"*? is an intersection of a complex cone
with generator C and a (2n + 1)-dimensional unit sphere 52"*1(1).

2. Antiholomorphic hypersurfaces with normal (f, ¢, u, v, w, A, g4, v
structure

We now define a tensor field S of type (1,2) as follows :

r‘:‘b = [f: flzb + (chb - Vbut':)'““l + (vcvb - vac)va
+ (Vwp —~ Vyw w?,

where [f, f]2, is the Nijenhuis tensor formed with fZ, that is,

U fles = fEV Sy — fiVefe = (Vefe = Vafo)ie-

The (f,g,u,v,w,\, u, v)-structure is said to be normal [4] if S%
vanishes identically.


hypertsurfa.ee
hypersurfa.ee

330 Shin,Yong Ho

In ths section, we assume that the hypersurface M with (f, g, u,v,w0, A, g, v}
structure of S™(1/v2) x $*(1/V/?2) is nomal. Then we have

FeVefs — BV fe — (Vefy = Vfo) fe + (Vs — Viu)u®
+ (Vewp — ViwJw® = 0.

because of (1.7) and (1.14).
Substituting (1.12},(1.13) and (1.15) into the last equation, we find

Tacws — Topwe = (kacfbe + kbef:)vc - (kaef: + kcefae)vb

2.1
( ) - (kceff;c )va - (kcvb - kbvc)waa
where
(22) ch = lcef[f + zbef:-

Contradicting @ and b in (2.1), we get

(2.3) Teew® = (6 + 2A)v. + Apk, — 2vkc . w®,

where we have used (1.2), (1.3), (1.9) and 8 = k. w*.
If we transvect (2.1) with w® and use (1.2),(1.3) and (2.3) we Gbtain

(1—p? -~ uz)Tac = {(8+ 2\)v, + Apk, — 20k, w° fw,
- kne(#ue + Vve)vc + kce(#'ae + V'Ue) + kbewazvc
+ by £ — Apt(kae fE + keo £2) — (ko — Bv,t4),

or, taking account of (1.9), we get

(2.4)
(1 - }1'2 - V2)Tac + A#(kaef: + kccfbe) - kbewb(f:vc + f:va)
= (vawe + vow,a ) + 2Avaw, + Ap(kowe — kewa ) — 2v(kaew®)w,)
+ (ugve — ueva) + (12 + vz)(ka'vc — kevg).
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Taking the skew-symmetric part of this with respect to a and ¢ we
get

(2.5)
v{we(kpew®) — wi(keew®)} = Avswe — vewy) + Ap(kpwe — kowy )
+ v{upve — uevp) + (1 + vz)(kg,vc — kovp).

On the other side, transvecting (1.8) with w® and considering (1.2),(1.3)
. and {1.10), we have

(26) kc;,w"wb +a +2ur = 0.
Transvection of w® to (2.5) gives
(2.7)
v(1 — @ — v kpew® =hpvup + Apky + {1~ ) — 0(p? + ) }op
— {av + 2uv’ + X + Apbflwy,

where we have used (1.3) and (2.6}.
If we transvect {2.7) with 4% and make use of (1.3}, (1.9), it means

(2.8) pvB(1 4+ M) = Ma + pv)p? - %)

Applying also (2.7) with v® and kb successively, we obtain respectively

9(1\22/2 . #2)
(2.9) 2, g2 s 2

= M—14+ 22 +2u% 4+ 202 + 20pv — V* + p*v%),
(2.10) B0+ 02—y + 08) = Mp® — av— i - pa’)

with the aid of (1.3),(1.5) and {1.9).
Combining (2.8) and (2.9), we can easily verify that

a( N2+ gt + Pt + 22207

2.11
- +pv(=1+ 207 + 2% + X 4 20707 + 2277 = 0.

First of all, we prove
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LEMMA 2.1. Let M be a hypersurface with normal (f, §rUs U, W, A, 1, )~
structure of $™(1/v/2)x8™(1//2). Then the function o? —1 is non-zero
almost everywhere.

Proof. If there exists an open interior M, in {p € M | a*(p) = 1},
then from (1.6) we see that k° = 0 on M,, which together with (1.8)
gives keew® = —aw,.

Thus, (2.5) leads to

on M. By transvecting v®w® and using (1.23), it follows that

AM1=X—p2—1?) =0

on the set. But, in a consequence of Remark 1 in section 1, A% 4 g% +
v?2 # 1 on M,. Consequently we have the function A vanishes on M,.
So we should have v, = 0 on M,. Hence (1.3) yields v> =1 and =0
on the set. Thus, (1.10) gives & = 0. It contradicts the definition of
the set M,. This completes the proof.

LEMMA 2.2. Let M be a k-antiholomorphic hypersurfaces with nor-
mal (f,g,u,v,w, X, g, v)-structure of S*(1/+/2) x S*(1//2). Then we
have the function y vanishes identically.

Proof. Since the hypersurface M is k-antiholomorphic, that is, the
function o vanishes on M, (2.8)—(2.11) reduces respectively to

(2.12)
prB(L+ %) = N — %),
(2.13)
O(N20? — p?) = M=14 A% + 2% + 2% — vt 4 p2?),
(2.14)
pO(v* + X% — p® + 208) = Au(p® - %),
(2.15.)

pr(=142u% + 202 + X 4+ 24207 + 2058 =0

If (uv)(p) # 0 for some point p of M, then the expresion above can
be written as
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(2.16) 8= (1 =)L+ 2%),
(2.17) B(v* + N — 1 + 28) = A — 1),
(2.18) 22+ 207 4 M 4+ 24207 1 2aH? =1

for such p of M. Substituting (2.16) mto (2.17), we find

(1 =1+ 224 ) =0

at the point p. Comparing (2.18) with the last expression, we have
(2 = )Bu2 + 2 + 22 £ 23 2202 4+ 20807 =0

at p € M. Since {uv)(p) # 0, it follows that u? — v% = 0 at the point.
50 (2.16) leads to §(p) = 0 and hence (2.13) means A(~1+A*+4u%) =0
at the point.

Differentiating A*( —1+ 3% +4p?) = 0 covariantly and taking account
of (1.16) and the orginal expression, we find

2pMw, — Ak — I u®) = A2v,

at p € M. If we transvect this with £ and make use of (1.10) and
the fact that §(p) = a(p) = 0, we get A = 0 at the point, which is
contradictory because of Remark 1. Thus uv = 0 on the whole space
M. So (2.13) and (2.14) becomes respectively

(2.19) 80202 — u®) = A1+ A2 + 24 + 207 — vt),
(2.20) pO(XE — u? + 20y = Ao,

We know consider a set given by

My = {pe M| u(p) #0},

M, is an open set in M. Then, the function v should be vanish on M,
because of the fact uv = 0 on M. Hence (2.4), (2.19) and (2.20) can
be respectively written as on M,
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(2.21)
(1 - P‘Z)Tac + )‘P(kaef: + kcef:) - kbewb(f::vc + f:vb)

= B(vaWe + vty ) + 2Av we + Ap(kgwe — kewg) + pr kg, — kevs),

(2.22) Op® = A1 — 2% — 247,
(2.23) M)+ 8) — 0p® = M.

Transvecting (2.21) with k%k° and taking account of (1.5),(1.8),(1.10),(1.19
and (2.2}, we find

ke kS yw'w® = —pb® — pAg
on the set because of @ = 0, or using (1.3) with v = 0 and (1.4),
p(l— p? = 6%) = —ub® — p)é6.

Thus, it follows that

(2.24) 1+X—-u*=0

on M.
Comparing {2.22), (2.23) and (2.24), we get on My

MO+ AP =0
or, using (2.22)

A2(1— A% — u?) =0,

Taking account of Remark 1 in section 1, the function g must be
vanish and consequently the set M, is void. Therefore our assertion is
true,



Normal Hypersurface immersed in a Product of two Splfres 335

LEMMA 2.3. Under the same assumptions as those stated in Lemma
2.2, we have A=8=0on M.

Proof. Since the function u vanishes identically, we see from the
second equation of (1.18) that

(2.25) we — Ake — leet® = 0.

If we transvect k¢ to this and make use of (1.6) and (1.19) with
a = 0, it means
(2.26) 6 = A

Thus, (2.19) with g = 0 gives

Mt — 202 4 227 — X2 4+ 1) =0,

that 1s,
M2 =DM+ -1)=0.

Owing to Remark 1, it implies

(227) /\2 -+ V2 =1
on M and hence v, = 0 because of (1.3). Hence A and v are both

constant because of Remark 1.
Therefore, the third equation of (1.16) yields

(2.28) keew® =0.
So (1.8) with a@ = 0 leads to

f«:ekc =0.

Transvecting ff means
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(2.29) ky = dwy — vuy

with the help of (1.1}, (1.10) with a = 0 and (2.26). Hence, (2.25)
reduces to

(2.30) leu® = (1 — AM)w, + Avu,.

If we take account of (2.28),(2.29), Lemma 2.2 and the fact that
ve = 0, (2.4) turned out to be

(1 - u2)ch =0,

or,equivalently

(2.31) Alee f& +he fS) =10,
where we have used (2.2) and (2.27). We now suppose that the function
A does not vanish at some point p of M, then (2.31) means
(2.32) leefs +lcefs =0,
at the point. Transvecting (2.32) with f° and making use of (2.30), we
find

—len + (1 - )\%)y’cub + Avucup + (lcewc)'wb + ldef:flf =0,

from which, taking the skew-symmetric part and using (2.27), we have

(2.33)
(leew®)wp — (lew®)we + v (weuy — wy — wptte) =0

at the point.
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If we trnsvect w® to the last relationship and use (1.3) and (2.27),
then
(2.34) Mlew® = {Igowfw® + AP we + A%,

at p € M because of x = 0. On the other side, by transvecting (2.29)
with I and considering (1.19) with a = 0, we obtain

Meew® — vl u® = 0,

which together with (2.30) and (2.34) gives
leww® =0

at the point. Thus (2.34) becomes

(2.35) Meew® = 3w, + Au,

because the function A does not vanish at p. Differentiating (2.29)
covariantly and taking account of (1.13),(1.15) and (1.18), we get
(236) kbelg = ’\lcefbe + Vfcb

at p € M, where we have used the fact that « = 0, A and v are
constant. If we differentiate (2.35) covariantly, we find

MV by )t + ALV cwe = 1/3VCwb + AV
at the point. Since X and v are constant, which togrther with (1.13)

and (1.15) gives

A(Vcibc)w‘f + )\I;(—che — lc“f:)
= ys{*ukcﬁ - Icef[f} + /\Vz{_}‘kcb + fcb}
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because g = 0, or taking the skew-symmetric part and using (1.11),
(2.28) and (2.32),

My ke + Mpelea f5° = VPlee f§ — M2 fob
at p € M. Subsituting (2.36) into this, we find at the point
Al‘:lcaf: = V{cefbe

with the aid of (2.32). If we transvect the last expression with f°* and
make use of (1.1) withv, =0, weget at pe M
Meloa(g®¢ — uu® — ww®) = vic(g%° — uu® — wu"),

which together with (2.30) and (2.35) yield
Al = v,
Since v, =0, (1.14) gives
vii = —2(n - 1)A.
Thus, the last two relationships mean
Mlal®® +2(n — 1)} =0

at p € M. So the set M must be void. Consequently the function A
vanishes identically and hence § = 0 on M. This completes the proof
of the Lemma. ’

Combining Theorem 1.2, 1.3 with Lemma 2.3, we conclude:

THEOREM 2.4. Let M be a k-anyiholomorphic hypersurfaces with
nomal (f,g,u,v,w, X, g, v)-structure of S*(1/v2) x $*(1/v/2)(n > 1).
Then M is a minimal Sasakian C-Einstein manifold.

Moreover, M as a submanifold of codimension 3 of a Euclidean

(2n + 2)-space is an intersection of a complex cone with generator C
and a (2n + 1)-sphere §?"+1(1).
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LEMMA 2.5. Let M be a hypersurface with normal (£, g,u,v,w, A, g, v)-
structure of S™(1/v/2) x $™(1/+/2). If the function 8 vanishes identi-
cally. then M is k-antiholomorphic.

Proof. Since § = 0 on M, (2.8)—(2.10) reduce respectively to be

(2.37)

Mo+ pw)(p® —v*) =0,
(2.38)

M=14 A% 4202 4+ 202 4 2apy — v* + +p*) = 0,
(2.39)

Mp? —av — pv? —a?p) =0,

From (2.37) and (2.39), we have

(2.40) Ay + ap)a(a + pv) = 0.

If we suppose that the function a{a + uv) # 0 for some point p of
M, then A(v + ap) = 0 at the point. By the definition of the function
A and Remark 1, it can not vanish at p € M, So we have v 4 oy = 0
at p € M. Thus (2.37) reduces to -

M- a*Ya+uv) =0

and hence A(1 — a?) =0 at the point.

Therefore, it follows that u(p) = 0 and consequently v(p) = 0 be-
cause of Lemma 2.1. So (2.38) gives A(1 — A?) = 0 at the point, which
is contrdictory by virtue of Remark 1. Thus, we have a{a + uv) = 0
on the whole space M. In the next place, we consider a set given by

No={p€ M |alp) #0}.

Then Nj is an open set in M. We have

(2.41) a+pr =0
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on Ny. Therefore {(2.49) implies
M(p? —a®)=0

on ths set. Since the function A cannot be zero, it follows from (2.41)
that ?(1 — v?) = 0 and hence 1 — v? = 0 on Nyp. Therefore, the last
relationship of (1.3) gives u(p) = 0 for p € No. Consequently (2.41)
yields & = 0 on Ny, which is contradictory. Hence the hypersurface is
k-antiholomorphic. Thus, Lemima 2.5 is proved.

According to Lemma 2.3 and Lemima 2.5, we can state :

THEOREM 2.6. Let M be a hypersurface with normal (f, g, u,v,w, A, £, v)-
structure of S*(1/v/2)x S™(1/\/2). The hypersurface M is k-antiholomorphic
if and only if the vector w* and k® are mutually orthogonal.

From the Theorem 2.4 and Theorem 2.6, we have immediately :

COROLLARY 2.7. Let M be a hypersurface with normal (f, ¢, u,v,w, A, 1
structure of S™(1/v/2) x §*(1/+/2)(n > 1). If the vector w® and k* are
mutually orthogonal, then M is the same type as that of Theorem 2.4.
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