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THE PROPERTIES OF NONOSCILLATION
AND FINITE VALENCE

JONG Su AN
1. Imtroduction.

In this paper we shall consider the differential equation
(1.1) y'(2) +p()y(z) =0, || <1,

where p(z) is a regular function in the open unit circle E. The ratio
(2} = u(z)/v(z) of any two independent solution u(z) and v(z) of (1.1)
will be a function f{z), meromorphic in E with only simple poles, and

such that f(z) # 0. The Schwarizian derivative of f(z},

Si(2) = (=) = 3852, w1(2) = ")/ F(2)
is connected with p(2) by
(12) Sy(2) = 2p().

If no solution of (1.1) (except the solution y(z) = 0) has more than
one zero in E then f(z) is univalent in E. Conversely, every univalent
function f(z) in E can be written as the ratio of two independent
solutions of the equation (1.1}. These connections were first stated by
Z.Nehari ([1] Theorem I). In this paper we give that the connections
of nonoscilation and finite valence. In Section 2, Theorem 2.1 may be
state us a criteria of nonossilation. In Section 3, we obtain a simpler
criteria for the finite valent of single valent meromorphic function.

2. A criteria of nonoscillation.

(1.1) is called nonoscillation in E if none of its solutions (except
y(z) = 0) has infinite many zeros in E. Correspondingly we call a
simgle valued meromorhic function finite valent in a domain D if for
each a the equation f(2) = a has only a finite number of solutions z in

D.
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THEOREM 2.1. Let p(2) be regular in |z| < 1 and assume there
exists g, 0 < 29 <1, such that for all z withzq < lz| < 1

(2.1) (- 1zFYip(2) < 1.
Then (1.1) is nonoscillation in |z| < 1.

Proof. Let zy,29(21 # 22) be any two points inside E. 2z, zo de-
termine uniquely a circle C' passing through them and orthogonal to
[z] = 1. Let us call the part of C' which lies between 2, and z; and
inside E, the orthogonal arc between 2y and z3, and let us denote it by
[2122]. Let xp be fixed and denote the ring zo < |2| < 1 by R.

Assume now that there exists a nontrivial solution y(z) of (1.1)
with infinitely many zeros in E. From this infinity of zeros we choose
a sequence converging to a point a on |z| = 1. 1t follow that we can
choose two zeros z; and zs of y(z), belonging to this sequence, such
that they, together with the orthogonal arc between them, lic in R.

There exists a linear transformation from {z| < 1 onto [{| < 1 given
by

(2.2) z = 6’0%, ja| < 1,

which carries z; and 2z, into { = p and { = —p respectively (0 < p < 1).
(2.2) transforms [2;25] into the segment (—p, p). Define for {({ < 1 by

(23) 00 =1 (" 552).
The substitution (2.2) transforms (1.1) into.
(2:4) y1 () + pi(Om(¢) = 0,
where

(2.5) So(C) =2p1(€)
and

1—

(2:6) (7552 ) =@
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Here o(() is regular and nonzero in || < 1. It follows that there exists
a solution y;{{) # 0 of (2.4) such that y;(p) = y1(—p) = 0. Setting { =
z + 2y, multiplying (2.4) on the segment (—p, p) by ¥, and integrating
from —p to p, we obtain

g 12 ? 2
wilde = [ pubnlds.
~p -p
Writing y; = u + v we have
P ?
2.7) (w2 +02)dz = / pi{e? +v?)de.
-p ~p
It can be shown that (2.2) and (2.3) imply
S(2)I(1 - [217)* = [Se(OI(L - I,
1t follows therefore by (1.2}, (2.1) and (2.5) that

(1-2"P|m(e) €1, —-p<2<p.
Hence,
14 [ u2 '}"02 14 u2 +_ 'UZ
pr{u? +v?)dz| < s dr < p2/ s 4.
/_p 1 -, (1—-22)? -, (p? — z2)?

Now the inequality

, [* u? p 2
P / ———dr < / u “dz
_, (P* — 2%y -

holds for continuously differentiable real functions u({z), —p < z < p,

which have at p zeros of the first order {1]. Then we have

p
< (u? + v2)dz,
-p

P
/ pl(u2 +v¥)dz

-p

which gives the desired contradiction to (2.7) and we have therefore
proved Theorem 2.1. O

This nonoscillation Theorem may now be stated as a criteria of finite
valent for meromorphic functions .
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COROLLARY 2.1.1. Let f(z) be meromorphic in |z] < 1 and assume
that
(1 —12)2)%155(2)| € 2 for zp <lzgl<1,0<mp <l

Then f(z) is finite valent in [z] < 1.

Proof. Assume that there exists a complex number w(which may be
oo} such that f(z) — w = 0 has an infinity of roots in E, Then there
exist 2;,22,(2z; # z2) such that f(2;) = f(z3) = w, and that z;. 29 and
the orthogonal arc between them lie in R.

Consider now f(z) and the corresponding (1.1) not in E, but only
in any simply connected domain D containing the arc {zz2| and con-
tained in R. We obtain therefore a solution y(z) of (1.1), analytic and
therefore single valued in D, such that y(z;) = y(22) = 0, while p(=2)
satisfies (2.1) in D (and especially on [212;]). But only this used in the
proof of Theorem 2.1. O

NEHARI RESULT (2]} : For the unit circle he proved that if pf . )
is regular in |2] < 1 and if

2w
28) / (p(e*)|d8 < oo,
0

then (1.1) is nonoscillation.
The integral on the left hand side of {2.8) is defined as the limit, for
p — 1, of the nondecreasing function

2w
/0 Ip(e)1do

and (2.8) is therefore equivalent to

2r
(2.9) [ Ip(pe’®)db < ¢, ¢ < 00,0 < p < 1.
0

Nehari Result may be deduced from Theorem 2.1. Indeed, setting

o

plz) = Z an2"”,

n=0
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(2.9) implies
17 |p(pe™)| c
< — 2 odf — =01,....
Iaﬂl _ 27(/0 Pn+1 ao < 271_!}“7 n 1+

Letting p — 1, we obtain |a,| € ¢/27 and therefore

o " ¢
tP(Z)I < 7;] !an“znl < m

This implies now the existence of at zg, such (2.1) holds for z4 <
Jz| < 1, i.e., the assumption of Theorem 2.1 is satisfied. So (1.1) is
nonoscillation.-

3. A finite valent theorem for a domain.

Let D be a simiply connected domain in the z plane, having at
least two boundary points and let w = 1(z) be a function mapping
D onto {w] < 1. Let D' be any closed domain lying in the interior of
D and denote by R’ the domain D — D'. The map of R' under the
transformation w = ¥(z) covers a circular ring R,z¢ < jw] < 1, with
0 < 2z < 1 and zp near enough to 1. Let f(z) be a meromorphic
function in D and define g(w) in |w| < 1 by

g(w) = f(¥ (w))-
f{z) is finite valent in D if and only if g(w) is so in |w| < 1. The

transformation formula S5(z) under the conformal mapping w = ¥(z)
1s

dw\ 2
(3.1) (51621 = 542 = Sy ()
Applying now Corollary 2.1.1 to g(w) it follows that f(z) will be
finite valent in D if the condition
2 &
(3.2} 1S¢(2} — Sy(2)| < ﬁ—W e

holds for all z € D — D'. Similarly it follows that if p(z) is regular in
D and if

(33) D)~ 55642 < T |22

holds for all z in D — DY, then (1.1) is nonoscillation in D.

2

2
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REMARK. {3.2) and (3.3) are independent of the normalization of
the Riemann mapping function w = #¥(z) mapping D onto |w| < 1.
Let wy = 11(2) be another such function mapping D onto |w;| < 1.
The function wy(w) = (¥~ (w)) is a linear mapping of |w| < 1 onto
|wif < 1 and it follows by the invariance of the Schwarzian derivative
with respect to all linear transformation, that S, (z) = Su(z), i.e,

(3.4) Sy (2) = Sy(2)-

Moreover, for a linear mapping of the unit circle onto itself, the

relation
1— s (w)f? _ ’dwli

1- |w|? dw
holds, which implies
3.5) 1 dipy [* 1 |’
' (1 - [:(2)*)? | dz (1 - [#(2)]*)? | d=

(3.4) and (3.5) show clearly that condition (3.2) and (3.3) are indepen-
dent of the normalization of the mapping ¥(z).

Restricting ourselves to domains bounded by a finite number of Jor-
dan curves, we have the following property:

Let D be a multiply connected domain in the 2 plane, bounded by a
finite number of Jordan curves. Let S be its universal covering surface.
Let w = %(z) map S onto |w| < 1 and let D' be any closed domain
in D. A function f(2), meromorphic and single valued in D, will be
finitely valent there if condition (3.3) holds for all z in D — D'.

This property enable us now to obtain a simpler criterion for the
finite valence of single valued meromorphic functions in the case in
which the n-boundaries of the domain are analytic Jordan curves.

THEOREM 3.1. Let D be a domain in the z-plane such that its
boundary B consists of a finite number of analytic Jordan curves. Let
S be its universal covering surface. Let zq € D and denote by B, the
level curve g(z,29,D) = €, € > 0, of the harmonic Green’s function
9(z,zp, D) with pole at zy. Let w = ¢(z) map S onto |w| < 1 and f(z)
be meromorphic and single valued in D and set

M(e) = max |Sy(z)].
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If
(3.8) lim e*M{e) =0,
£ i

then f(z) is finite valent in D.

Proof. Suppose D is not simply connected. Choose #(2) on § so
that ¥(z9) = 0. Let z be the coordinate in D and not on S, so that
() is a many valued function. By the connecting the n - boundary
curves By,...B, of D by n — 1 cuts vy,...,v,_1, we obtain a simply
connected domain D*. D* allows us to fix uniquely a branch ¢,(z) of
¥(z). Assume that none of the cuts v4,...,v,_1 go through z;. Let the
branch 1,(z) be defined 1,(2p) = 0, and consider the behavior of this
branch in D and on B. From the analyticity of the bounary curves
it follows that ,(2) and its derivatives are piecewise analytic on B.
Moreover, 5’-‘%’2 #0in D = DU B and it follows that, for all z in D,

(3.7) |Se.(2)] = 1Se(2)] S M, 0 < M < 0,

(3.8) “-i% >m, 0 <m < oo,

For every € > 0 let us now consider the following two closed region in

D
Di(e)={z:9(z,20,D) > ¢}

and
Dy(e) = {z]z = 7 (w), jw| < e}

Then we have [5, pp. 50-51]
(3.9) Dafe) € Di(e).

(3.9) implies now that |¢(z)] > €™ for the level curve B.(g(z, 2z, D) =
¢} and in particular

fi(2)| > e7%, 2 € B,e > 0.
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We have therefore for each 2 € B,

1= {h(2)f = A+ 2D - [9(2)) <21~ e7%) < 26
which implies
(3.10) M(e)(1 — 9. (2)*) < aM(£)e.

Using now our assumption (3.6), it follows from (3.1), (3.5), (3.7) (3.8)
and (3.10) that there exists €9 > 0 such that

2 2

[¥:(2)1?)?

for all z with 0 < g¢(z, 29, D) < &y, i.e., for all z € D — Dy(gp). So we
have proved Theorem 3.1 for a multiply connected domain.

If D is simply connected domain we use condition (3.2). Relation
{(3.7) and (3.8) hold now for the single valued function %(z) and in this
case, clearly, D;(e) = D,(¢). Therefore Theorem 3.1 is established. O

d_t!@
dz

1S5(2) = S0, () < 7=
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