ON RIGIDITY FOR REAL HYPERSURFACES IN A COMPLEX PROJECTIVE SPACE

HYANG SOOK KIM

1. Introduction

Let $P_n(\mathbb{C})$ be an *n*-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 4c and M be a (2n-1) dimensional Riemannian manifold. Let ι be an isometric immersion of M into $P_n(\mathbb{C})$. An almost contact structure on M induced from the complex structure \widetilde{J} of $P_n(\mathbb{C})$ by ι will be denoted by (ϕ, ξ) .

The problem with respect to the rigidity for real hypersurfaces in $P_n(\mathbb{C})$ has been studied by many geometers ([1], [2], [5] and [6] etc.). R. Takagi [6] proved that two isometric immersions of M into $P_n(\mathbb{C})$ are rigid if their second fundamental forms coincide. In [5], the same author and Y.J.Suh also obtaind the same conclusion if two isometric immersions have a principal direction in common and type number is not equal to 2 at each point of M, where the type number is defined as the rank of the second fundamental form. Recently, the author of the present paper together with Y.-W. Choe, I.-B. Kim and R.Takagi [2] showed that if there exists an m-dimensional subspace of the tangent space which is invariant under the actions of the shape operators, and the type number is not equal to 2 at each point of M, then two isometric immersions are rigid.

In this paper we shall prove the following.

MAIN THEOREM. Let M be a (2n-1)-dimensional homogeneous Riemannian manifold, and ι and $\hat{\iota}$ be two isometric immersions of M into $P_n(\mathbb{C})$ $(n \geq 3)$. If there exists an m-dimensional subspace V of the tangent space at each point of M such that V is invariant under the actions of the shape operators of (M, ι) and $(M, \hat{\iota})$ $(2 \leq m \leq n-1)$,

Received Ocotober 14, 1995.

This work was supported by Grant from Inje University, 1995.

then ι and $\hat{\iota}$ are rigid, that is, there exists an isometry φ of $P_n(\mathbb{C})$ such that $\varphi \circ \iota = \hat{\iota}$.

2. Preliminaries

We denote by $P_n(\mathbb{C})$ a complex projective space with the metric of constant holomorphic sectional curvature 4c and M a (2n-1)-dimensional Riemannian manifold. Let ι be an isometric immersion of M into $P_n(\mathbb{C})$. In the sequel the indices i, j, k, l, \cdots run over the range $1, 2, \cdots, 2n-1$ unless otherwise stated. For a local orthonormal frame field $\{e_1, \cdots, e_{2n-1}\}$ of M, we denote its dual 1-forms by θ_i . Then the connection forms θ_{ij} and the curvature forms Θ_{ij} of M are defined by

(1.1)
$$d\theta_i + \sum \theta_{ij} \wedge \theta_j = 0, \quad \theta_{ij} + \theta_{ji} = 0,$$

(1.2)
$$\Theta_{ij} = d\theta_{ij} + \sum \theta_{ik} \wedge \theta_{kj}$$

respectively. We denote the components of the shape operator or the second fundamental tensor A of (M, ι) by A_{ij} , and put $\psi_i = \sum A_{ij}\theta_j$. Then we have the equations of Gauss and Codazzi

(1.3)
$$\Theta_{ij} = \psi_i \wedge \psi_j + c\theta_i \wedge \theta_j + c \sum_{i} (\phi_{ik}\phi_{jl} + \phi_{ij}\phi_{kl})\theta_k \wedge \theta_l,$$

(1.4)
$$d\psi_i + \sum \psi_j \wedge \theta_{ji} = c \sum (\xi_j \phi_{ik} + \xi_i \phi_{jk}) \theta_j \wedge \theta_k$$

respectively, where (ϕ_{ij}, ξ_k) is the almost contact structure on M. The tensor fields $A = (A_{ij}), \phi = (\phi_{ij})$ and $\xi = (\xi_i)$ on M satisfy

$$(1.5) A_{ij} = A_{ji},$$

(1.6)
$$\sum \phi_{ik} \phi_{kj} = \xi_i \xi_j - \delta_{ij}, \quad \sum \xi_j \phi_{ji} = 0, \quad \sum \xi_i^2 = 1,$$

(1.7)
$$d\phi_{ij} = \sum_{j} (\phi_{ik}\theta_{kj} - \phi_{jk}\theta_{ki}) - \xi_i\psi_j + \xi_j\psi_i,$$

(1.8)
$$d\xi_i = \sum (\xi_j \theta_{ji} - \phi_{ji} \psi_j).$$

For another isometric immersion $\hat{\iota}$ of M into $P_n(\mathbb{C})$, we shall denote the differential forms and tensor fields of $(M, \hat{\iota})$ by the same symbol as ones in (M, ι) but with a hat.

3. Proof of Main Theorem

Let ι and $\hat{\iota}$ be two isometric immersions of a (2n-1)-dimensional Riemannian manifold M into a complex projective space $P_n(\mathbb{C})$ $(n \geq 3)$. In the following we assume that there exists an m-dimensional subspace V of the tangent space $T_p(M)$ of M at $p \in M$ such that V is invariant under the actions of the shape operators A of (M, ι) and \hat{A} of $(M, \hat{\iota})$. If m = 1, then we have a principal direction in common and this case was studied in [5]. Since V is invariant under A and \hat{A} , so is the orthogonal complement V^{\perp} of V. Therefore the case of $m \geq n$ can be alternated to that of $m \leq n-1$, and we have only to consider the case where $2 \leq m \leq n-1$.

LEMMA 2.1([2]). If there is a subspace V mentioned above, then we have $\phi = \pm \hat{\phi}$.

Proof of Main Theorem. Owing to Lemma 2.1 and $\Theta_{ij} = \hat{\Theta}_{ij}$, it follows from (1.3) that

$$\psi_{i} \wedge \psi_{j} = \hat{\psi}_{i} \wedge \hat{\psi}_{j}.$$

Then, by a well-known lemma of E.Cartan [1], we have at each point of M,

(2.1) if
$$t \geq 3$$
 or $\hat{t} \geq 3$, then $\psi_i = \varepsilon \hat{\psi}_i (\varepsilon = \pm 1)$ for $i = 1, \dots, 2n-1$,

$$(2.2) t+\hat{t}=1 or t=\hat{t},$$

where t (resp. \hat{t}) denotes the type number of (M, ι) (resp. $(M, \hat{\iota})$). Since M is complete, it follows from a theorem in [4] due to the author of the present paper and R.Takagi that there exists a point p_0 such that $t(p_0) \geq n$. Let p be an arbitrary point of M. Then, since M is homogeneous, there exists an isometry g of M such that $g(p_0) = p$ and hence the type number is not smaller than n on M. Thus, we see from (2.1) that $A = \pm \hat{A}$ everywhere on M. Therefore ι and $\hat{\iota}$ are rigid (cf. Theorem 3.2 in [6]). \square

COROLLARY 2.2. Let M be a (2n-1)-dimensional homogeneous Riemannian manifold, and ι be an isometric immersion of M into $P_n(\mathbb{C})$ $(n \geq 3)$. Assume that there exists an m-dimensional subspace V of the tangent space at each point of M such that V is invariant under the actions of the shape operators of (M, ι) and $(M, \hat{\iota})$ $(2 \leq m \leq n-1)$. Then $\iota(M)$ is an orbit under an analytic subgroup of the projective unitary group PU(n+1).

Note that all real hypersurfaces in $P_n(\mathbb{C})$ obtained as orbits under analytic subgroups of the projective unitary group PU(n+1) are completely classified in [6].

Proof of Corollary 2.2. For any isometry g of M we have another isometric immersion $\hat{\iota} = \iota \circ g$ of M into $P_n(\mathbb{C})$. Here we note that there exists a point p_0 on M such that $t(p_0) \geq n$. Let p be an arbitrary point of M. Then, since M is homogeneous, there exists an isometry g of M such that $g(p_0) = p$. By (2.2) we find

$$t(p_0) = \hat{t}(p_0) = t(p)$$

because $t(p_0) \ge 3$. Thus we have $t(p) \ge 3$.

Now by a theorem in [2], there exists an isometry φ_g of $P_n(\mathbb{C})$ such that $\varphi_g \circ \iota = \iota \circ g$, and $\iota(M)$ is just an orbit under the analytic subgroup $\{\varphi_g; g \in I(M)\}$ of PU(n+1), where I(M) denotes the group of all isometries of M. \square

REMARK 2.3. The Main Theorem and Corollary 2.2 are not valid for a complex hyperbolic space $H_n(\mathbb{C})$ with negative constant holomorphic sectional curvature.

Open problem. Let M be an (2n-1)-dimensional Riemannian manifold, and ι and $\hat{\iota}$ be two isometric immersions of M into $P_n(\mathbb{C})$. Then are ι and $\hat{\iota}$ rigid?

References

- E. Cartan, La déformation des hypersurfaces dans l'espace euclidean réel à n dimensions, Bull. Soc. Math. France 44 (1910), 65-99.
- 2. Y.-W. Choe, H. S. Kim, I.-B. Kim and R. Takagi, Rigidity theorems for real hypersurfaces in a complex projective space, to appear in Hokkaido Math. J.

- 3. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z 202 (1989), 299-311.
- 4. H. S. Kim and R. Takagi, The type number of real hypersurfaces in $P_n(\mathbb{C})$, to appear in Tsukuba J. Math
- 5. Y. J. Suh and R. Takagi, A rigidity for real hypersurfaces in a complex projective space, Tohoku Math. J. 43 (1991), 501-507.
- 6. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J Math 10 (1973), 495-506.
- 7. Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J Math. Soc. Japan 27 (1975), 43-53,507-516.

Department of Mathematics Inje University Kimhae 621-749, Korea