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ON RIGIDITY FOR REAL HYPERSURFACES 
IN A COMPLEX PROJECTIVE SPACE

Hyang Sook Kim

1. Introduction

Let RJC) be an n-dimensional complex projective space with the 
Fubini-Study metric of constant holomorphic sectional curvature 4c 
and M be a (2n — 1) dimensional Riemannian manifold. Let t be an 
isometric immersion of M into &(C). An almost contact structure on 
M induced from the complex strcture J of Pn(C) by l will be denoted 
by 0M).

The problem with respect to the rigidity for real hypersurfaces in. 
Pn(C) has been studied by many geometers ([1], [2], [5] and [6] etc.). 
R.Takagi [6] proved that two isometric immersions of M into Pn(C) 
are rigid if their second fundamental forms coincide. In [5], the same 
author and Y.J.Suh also obtaind the same conclusion if two isometric 
immersions have a principal direction in common and type number is 
not equal to 2 at each point of M, where the type number is defined as 
the rank of the second fundamental form. Recently, the author of the 
present paper together with Y.-W. Choe, L-B. Kim and R.Takagi [2] 
showed that if there exists an m-dimensional subspace of the tangent 
space which is invariant under the actions of the shape operators, and 
the type number is noLequal to 2 at each point of M, then two isometric 
immersions are rigid.

In this paper we shall prove the following.

Main Theorem. Let M be a (2n — 1)-dimensional homog이 
Riemannian manifold, and b and b be two isometric immersions of M 
into Pn(C) (n > 3). If there exists an m-dimensional subspace V of the 
tangent space at each point of M such that V is invariant under the 
actions of the shape operators of (M, t) and (M, t) (2 < m < n — 1)?
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then b and I are rigid, that is, there exists an isometry 屮 of R(C) such 
that 9? o 4 = Z.

2. Preliminaries
We denote by Rt(C) a complex projective space with the metric 

of constant holomorphic sectional curvature 4c and M a (2n — 1)- 
dimensional Riemannian manifold. Let z- be an isometric immersion of 
M into Pn(C). In the sequel the indices run over the range
1,2, ••- , 2n — 1 unless otherwise stated. For a local orthonormal frame 
field {e로, • • • , e2n-i} of M, we denote its dual 1-forms by 缶. Then the 
connection forms 0tj and the curvature forms 0U of M are defined by

(1.1) d0t + A = 0,— 0,

(1.2) = dOi3 + £人

respectively. We denote the components of the shape operator or the 
second fundamental tensor A of (Af, 4)by Atj^ and put 访=£ 4匕烏. 
Then we have the equations of Gauss and Codazzi

(1.3) Ojj = {毎 A + 覘 A % + c £：(如妇 + 4®饥"Wk A h

(1.4) 州 + £：也M Qi = (&如k + &饥帆 A 0k

respectively, where (妁，&) is the almost contact structure on M. The 
tensor fields A — =(如j) and $ = (&) on M satisfy

(1.5) Atj = Ajiy

(L6) ，: 加0x：j = &饥* = 0,&어 = L

(1.7) dg =，［(由血j 一缶泌知)一&物+e油，

(1.8) d& = £馬际-如必).

For another isometric immersion 4 of M into J^(C), we shall denote 
the differential forms and tensor fields of (M, f) by the same symbol as 
ones in (A么 t) but with a hat.
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3. Proof of Main Theorem

Let i and i be two isometric immersions of a (2n 一 1)-dimensional 
Riemannian manifold M into a complex projective space R(C) (n > 
3). In the following we assume that there exists an m-dimensional 
응ubspace V of the tangent space Tp(M) of M at p € M such that V is 
invariant under the actions of the shape operators A of (M,i) and A 
of (M, £). If m = 1, then we have a principal direction in common and 
this case was studied in [5]. Since V is invariant under A and A, so is 
the orthogonal complement V1- of V. Therefore the case of m > n can 
be alternated to that of m < n — 1, and we have only to consider the 
case where 2 < m < n — 1.

LEMMA 2.1([2]). If there is a subspace V mentioned above, then 
we have(/)= ±&

Proof of Main Theorem. Owing to Lemma 2.1 and it
follows from (1.3) that

饱/'由=宙A祝.

Then, by a well-known lemma of E.Cartan [1], we have at each point 
of M,

(2.1) if / > 3 or i > 3, 난icn 饥 = &就(& = ±1) for i = 1,«.., 2n — 1,

(2.2) t +1 = 1 or t = £

where t (resp. £) denotes the type number of (Af, i) (resp. (Af, £)). 
Since M is complete, it follows from a theorem in [4] due to the author 
of the present paper and R.Talcagi that there exists a point po such 
that i(po) 2 n. Let p be an arbitrary point of M. Then, since M is 
homogeneous, there exists an isometry g of M such that g(p()) = p and 
hence the type number is not smaller than n on M. Thus, we see from 
(2.1) that A = ±A everywhere on M. Therefore i and I are rigid (cf. 
Theorem 3.2 in [6]). □
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COROLLARY 2.2. Let M be a (2n — 1)-dimensional homogeneous 
Riemannian manifold, and b be an isometric inunersion of M into R(C) 

(n 2 3). Assume that there exists an m-dimensional subspace V of the 
tangent space at each point of M such that V is invariant under the 
actions of the shape operators of 4)and (Af, £) (2 < m < n — 1). 

Then is an orbit under an analytic subgroup of the projective 
unitary group PU(n + 1).

Note that all real hypersurfaces in Pn(C) obtained as orbits un
der analytic subgroups of the projective unitary group PU(n + 1) are 
completely classified in [6].

Proof of Corollary 2.2. For any isometry g of M we have another 
isometric immersion I = tog of M into Pn(C). Here we note that there 
exists a point po on M such that t(po) > n. Let p be an arbitrary point 
of M. Then, since M is homogeneous, there exists an isometry g of M 
such that g(pj) = p. By (2.2) we find

= i(po) = i(p)

because i(po) > 3. Thus we have t(p) > 3.
Now by a theorem in [2], there exists an isometry(pg of J^(C) such 

that <PgOt = tog, and t(Af) is just an orbit under the analytic subgroup 
加g；g € I(M)} of PU(n + 1), where Z(M) denotes the group of all 
isometries of M. □

REMARK 2.3. The Main Theorem and Corollary 2.2 are not valid 
for a complex hyperbolic space Hn(C) with negative constant holomor
phic sectional curvature.

Open problem. Let M be an (2n — l)-dimensional Riemannian 
manifold, and i and I be two isometric immersions of M into R(C)・ 
Then are c and I rigid ?
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