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ON RIGIDITY FOR REAL HYPERSURFACES
IN A COMPLEX PROJECTIVE SPACE

HyanGg SOOK KiMm

1. Introduction

Let P,(C) be an n-dimensional complex projective space with the
Fubini-Study metric of constant holomorphic sectional curvature 4c
and M be a (2n — 1) dimensional Riemannian manifold. Let ¢ be an
isometric immersion of M into Pn(C). An almost contact structure on
M induced from the complex strcture J of P,(C) by ¢ will be denoted
by (,¢).

The problem with respect to the rigidity for real hypersurfaces in
P,(C) has been studied by many geometers {[1], [2], [5] and [6] etc.).
R.Takagi [6] proved that two isometric immersions of M into Pp(C)
are rigid if their second fundamental forms coincide. In [5], the same
author and Y.J.Suh also obtaind the same conclusion if two isometric
immersions have a principal direction in common and type number is
not equal to 2 at each point of M, where the fype number is defined as
the rank of the second fundamental form. Recently, the author of the
present paper together with Y.-W. Choe, 1.-B. Kim and R.Takagi [2]
showed that if there exists an m-dimensional subspace of the tangent
space which is invariant under the actions of the shape operators, and
the type number is not equal to 2 at each point of M, then two isometric
immersions are rigid.

In this paper we shall prove the following.

MAIN THEOREM. Let M be a (2n — 1)-dimensional homogeneous
Riemannian manifold, and ¢« and i be two isometric immersions of M
into Pp(C) (n > 3). If there exists an m-dimensional subspace V of the
tangent space at each point of M such that V is invariant under the
actions of the shape operators of (M, ) and (M,7) (2 < m < n -1},
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then ¢ and i are rigid, that is, there exists an isometry ¢ of P,(C) such
that poc¢ =1.

2. Preliminaries

We denote by P,(C) a complex projective space with the metric
of constant holomorphic sectional curvature 4c and M a (2n — 1)-
dimensional Riemannian manifold. Let ¢ be an isometric immersion of
M into P,(C). In the sequel the indices 7, , k,1,- - - run over the range
1,2,---,2n —1 unless otherwise stated. For a local orthonormal frame
field {e;, -+ ,e2n—1} of M, we denote its dual 1-forms by 8;. Then the
connection forms 8, and the curvature forms ©,, of M are defined by

(1.1) o, + ) 6i; N6; =0, 6,+6,=0,

(12) (-):3 = doi; "l'zozk’\okj

respectively. We denote the components of the shape operator or the
second fundamental tensor A of (M, ) by A,j, and put ; = Y A,,6,.
Then we have the equations of Gauss and Codazzi

(1.3) On=vi AN, +cbi AN, + CZ(cﬁswﬂ + $ujbr)bi A6y,

(1.4) A+ By A=) (Edu + Etsr)dy A

respectively, where (¢.;, ) is the almost contact structure on M. The
tensor fields A = (A,;), ¢ = (¢;) and £ = (£,) on M satisfy

(1.5) A, = Ay,

(1.6) Y Subr; =k~ by, > 6 =0, Y &7 =1,
(1.7) duy = D (burbry — $x00) — Exth; + Ejthi,

(1.8) A& =Y (&0, — $5x%,)-

For another isometric immersion { of M into P,(C), we shall denote
the differential forms and tensor fields of (M, ?) by the same symbol as
ones in (A, ) but with a hat.
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3. Proof of Main Theorem

Let ¢ and 7 be two isometric immersions of a (2n — 1)-dimensional
Riemannian manifold M into a complex projective space P,(C) (n >
3). In the following we assume that there exists an m-dimensional
subspace V of the tangent space T,(M) of M at p € M such that V' is
invariant under the actions of the shape operators A of (M,:) and A
of (M,?). If m = 1, then we have a principal direction in common and
this case was studied in [5]. Since V is invariant under A and 4, so is
the orthogonal complement V+ of V. Therefore the case of m > n can
be alternated to that of m < n — 1, and we have only to consider the
case where 2 < m <n-1.

LEMMA 2.1({2}). If there is a subspace V mentioned above, then

-

we have ¢ = +¢.

Proof of Main Theorem. Owing to Lemma 2.1 and ©,, = (:)‘J, it
follows from (1.3) that

¢':A¢J :1»5:/\")2'}-

Then, by a well-known lemma of E.Cartan [1], we have at each point
of M,

(2.1) if t>3 or {>3,then %, = eth,(¢ = +1) for 1 =1,...,2n—1,

(2.2) t+t=1 or t=4%,

where # (resp. f) denotes the type number of (M,:) (resp. (M,?7)).
Since M is complete, it follows from a theorem in [4] due to the author
of the present paper and R.Takagi that there exists a point py such
that #(pp) > n. Let p be an arbitrary point of M. Then, since M is
homogeneous, there exists an isometry ¢ of M such that ¢(py) = p and
hence the type number is not smaller than n on M. Thus, we see from

(2.1) that A = +A everywhere on M. Therefore ¢ and { are rigid (cf.
Theorem 3.2 in [6}). O
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COROLLARY 2.2. Let M be a (2n — 1)-dimensional homogeneous
Riemannian manifold, and . be an isometric immersion of M into P,(C)
{n > 3). Assume that there exists an m-dimensional subspace V of the
tangent space at each point of M such that V is invariant under the
actions of the shape operators of (M) and (M,7) (2 <m < n -1).
Then (M) is an orbit under an analytic subgroup of the projective
unitary group PU(n + 1).

Note that all real hypersurfaces in P,(C) obtained as orbits un-
der analytic subgroups of the projective unitary group PU(n + 1) are
completely classified in {6].

Proof of Corollary 2.2. For any isometry ¢ of M we have another
isometric immersion i = tog of M into P,(C). Here we note that there
exists a point pg on M such that ¢(ps) > n. Let p be an arbitrary point
of M. Then, since M is homogeneous, there exists an isometry g of M
such that g(pe) = p. By (2.2) we find

t(po) = (po) = t{p)

because t(pg) > 3. Thus we have t(p) > 3.

Now by a theorem in [2], there exists an isometry ¢4 of P,(C) such
that @ 0t = tog, and ¢( M) is just an orbit under the analytic subgroup
{¢gi9 € I(M)} of PU(n + 1), where I(M) denotes the group of all
isometries of M. O

REMARK 2.3. The Main Theorem and Corollary 2.2 are not valid
for a complex hyperbolic space H,,(C) with negative constant holomor-
phic sectional curvature.

Open problem. Let M be an (2n — 1)-dimensional Riemannian
manifold, and ¢ and ¢ be two isometric immersions of M into P,(C).
Then are ¢ and 7 rigid ?
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