Pusan Kyŏngnam Math. J 11(1995), No 2, pp. 229-235

INTERGRAL REPRESENTATION OF VECTOR-VALUED CONTINUOUS FUNCTIONS

Dong Hwa Kim

1. Introduction

Let S be a compact Hausdorff space, let X, Y be locally convex Hausdorff spaces over real and complex field. Let C(S, X) denote the continuous functions from S into X with the topology of uniform convergence.

The purpose of this paper is to give an integral representation for continuous linear operator T on C(S, X) into Y by means of integrals with respect to L(X, Y) and we investigate some problems of the theory of vector-valued functions for an operator-valued measure.

2. Preliminaries and Notations

Let Σ be an σ -algebra of the closed subsets of S and L(X,Y) be the space of all continuous linear operators on X into Y. Let Y' and Y'' be dual and bidual of Y, respectively.

For each continuous semi-norm q of Y there exists a continuous semi-norm p on X such that $\{q(T(x)); x \in B_p\}$ is bounded, where $B_p = \{x \in X; p(x) \leq 1\}$. By B_p^0 we mean the polar set of B_p , i.e. the set $x' \in X'$ with $| < x, x' > | \leq 1$ for all $x \in B_p$ and p(x) = $\sup\{| < x, x' > |; x' \in B_p^0\}$. The topology of C(S, X) is generated by the seminorms $p(f) = \sup_{s \in S} p(f(s))$, and the topology for Y'' is generated by the seminorms $q''(y'') = \sup_{y' \in B_q^0} | < y', y'' > |$. If $E \in \Sigma$ we denote the characteristic function of E by χ_E .

Received Ocotober 11, 1995.

This paper was supported by the Research Foundation of Kyungnam University 1994 .

Dong Hwa Kim

If $E \in \Sigma$ and $x \in X$ we identify the simple function $\chi_E \cdot x$ as an element of C''(S,X) since this identification is an isometric isomorphism in [4] and [8]. The linear operator $T; C(S,X) \to Y$ is continuous if and only if there exists a pairing (p,q) such that $||T||_{(p,q)} = \sup\{q(T(f)); p(f) \leq 1\}$. It is well known that T'' (the bitranspose of T) maps C''(S,X) into Y'', and $||T||_{(p,q)} = ||T''||_{(p,q)}$.

DEFINITION 2.1. An operator-valued measure $\mu; \Sigma \to L(X, Y)$ said to be of bounded (p,q)-variation on $E \in \Sigma$ for a continuous semi-norm p(q) on X(Y) if

$$\{q(\sum_{i=1}^{\infty}\mu(E_i)x_i); \quad E_i \cap E_j = \phi(i \neq j), x_i \in B_p\}$$

is bounded and we define the (p,q)-variation of μ on $E \in \Sigma$,

$$\| \mu \|_{(p,q)} = \sup_{y' \in B_q^0} \{ q(\sum_{i=1}^n y' \mu(E_i) x_i); y' \in Y', x_i \in B_p \}$$

DEFINITION 2.2. A function $f; S \to X$ said to be μ - integrable with respect to an operator-valued measure if

- (1) f is $y'\mu$ -integrable (in the sense of [3]), and
- (2) for each $E \in \Sigma$, there is an element $y_E \in Y$ such that

$$y'(y_E) = \int_E fy' \mu(ds), \quad for \quad y' \in Y'.$$

Since Y is a locally convex Hausedorff space, we denote $y_E = \int_E f(s)\mu(ds)$ and y_E is unique whenever it exists. It is well known that X-valued simple function is μ -integrable and the integral of such a function is given by

$$\int_E f\mu(ds) = \sum_{i=1}^n \mu(E \cap E_i) x_i$$

is an Y-valued measure on Σ .

230

DEFINITION 2.3. L(X, Y'')-valued measure, defined on Σ is said to be weakly regular if the set function $y'\mu(\cdot)x$ is regular for $x \in X$ and $y' \in Y'$.

From the above definition we have that

$$<\mu(E)x,y'>=< T''(\chi_E\cdot x),y'>$$

 $=<\chi_E\cdot x,T'y'>$
 $=y'\mu(E)x$

which weakly operator valued regular mesure. Suppose μ is any weakly regular operator-measure of bound (p,q'') such that $T(f) = \int f du$, then

$$< T(f \cdot x), y' >= \int fy' \mu(ds) = < f \cdot x, T'y' > = < \mu(E), y' >, x \in X.$$

Since Y is locally convex space for $y' \in Y', f \in C(S, X)$, if

$$\int fy'\mu(ds) = \int fy'\lambda(ds),$$

then we have $y'\mu = y'\lambda$. Hence $\mu = \lambda$.

LEMMA 2.4. [5] For $E_i \in \Sigma$, $x_i \in X$, $E_i \cap E_j = \phi(i \neq j)$, i, j = 1, 2, ..., n, we have that

$$q''(\sum_{i=1}^n \chi_{E_i} \cdot x_i) \leq \max p(x_i).$$

For q'' on Y'' there exists a p such that T is (p,q)-related and so T'' is (p'',q'')-related such that

$$q''(\sum_{i=1}^{n} \mu(E_{i})x_{i}) = q''(T''(\sum_{i=1}^{n} \chi_{E_{i}} \cdot x_{i}))$$

$$\leq ||T||_{(p'',q'')}p''(\sum_{i=1}^{n} \chi_{E_{i}} \cdot x_{i})$$

$$\leq ||T||_{(p,q)} \max p(x_{i}).$$

Therefore we see that $\mu(E) \in L(X, Y'')$, for each $E \in \Sigma$, since $q''(\mu(E)x) \leq ||T||_{(p,q)}p(x)$.

Dong Hwa Kim

PROPOSITION 2.5. Let $T; C(S, X) \to Y$ be a continuous linear operator, then the weakly operator-valued regular measure μ defined on Σ with values in L(X, Y''), given by

$$\mu(E)x = T''(\chi_E \cdot x) \quad for \quad E \in \Sigma, x \in X.$$

Proof. For $y' \in Y'$ and $x_i \in X$ (i = 1, 2, ..., n),

$$q''(\sum_{i=1}^{n} \mu(E_{i})x_{i}) = \sup_{y' \in B_{q}^{0}} (y'T''(\sum_{i=1}^{n} \chi_{E_{i}} \cdot x_{i}))$$

$$\leq ||T||_{(p'',q'')}p''(\sum_{i=1}^{n} \chi_{E_{i}} \cdot x_{i})$$

$$\leq ||T||_{(p,q)} \max_{i} p(x_{i}).$$

For $y' \in Y'$ and $x \in X$, let $\lambda(E) = y'\mu(E)x$, then

$$y'\mu(E)x = y'(T''(\chi_E \cdot x)) = (\chi_E \cdot x)(T'y') \quad for \quad E \in \Sigma,$$

which is regular measure.

3. Representation of continuous linear operator

Every L(X, Y)-valued measure μ on Σ may be considered as being L(X, Y'')-valued, by the canonical mapping of X into X''. Therefore we can define $< \mu(E)x, y' >= y'\mu(E)x$ and we have

$$q(y'\mu(E)x) \leq q(\mu(E))p(x), E \in \Sigma, x \in X.$$

Let $\mu; \Sigma \to L(X, Y'')$ be an operator-valued measure. By $M(\Sigma, X')$, the space of all regular X'-valued measures of finite variations on $\Sigma, \quad y'\mu \in M(\Sigma, X')$ is finitely additive.

THEOREM 3.1. Let S be a locally convex Hausdorff space and T; C(S, X) - Y be continuous linear operator. Then there exists a unique operator-valued measure $\mu; \Sigma \to L(X, Y'')$ such that

(1) the linear map $y' \to y'\mu$ on Y' into $M(\Sigma, X')$ for each $y' \in Y'$ is continuous,

(2) if T is (p,q)-defined operator, then we have

$$\| \mu \|_{(p,q)} = \| T \|_{(p,q)}$$

- (3) $y'(T(f)) = \int f y' \mu(ds), f \in C(S, X), y' \in Y'$ (4) $T'y' = y' \mu$ for $y' \in Y'$.

Conversely if $\mu; \Sigma \to L(X, Y'')$ has properties (1) and (2), then the linear operator $T; C(S, X) \rightarrow Y$ defined by (3) is continuous and (p, q)defined operator as (2), and whose adjoint is given by (4).

Proof. For $E \in \Sigma$, $\mu(E)$; $X \to Y''$ is linear and from Lemma 3.2 we have

$$\mu(E)x = T''(\chi_E \cdot x), \quad x \in X.$$

For each continuous seminorms p, q on X, Y, respectively, we define

$$y \in Y, \quad y \to q(y) = |\langle y, y' \rangle| \quad and$$

$$q(y'\mu(E)x) = q(y'T''(\chi_E \cdot x)) = q(T'y'(\chi_E \cdot x))$$

$$\leq \sup_{\||f|| \leq 1} q((T'y')(f \cdot x))$$

$$\leq \|T\|_{(p,q)} p(f \cdot x) \leq \|T\|_{(p,q)} \|f\|_{C(S,X)} \cdot p(x).$$

Furthermore from (3) we have the following property

$$y'(T(f)) = y'(T(\sum_{i=1}^{n} \chi_{E_i} \cdot x_i))$$

= $y'(\sum_{i=1}^{n} \mu(E_i)x_i) = \sum_{i=1}^{n} y'\mu(E_i)x_i.$

Thus it follows that

$$y'(T(f)) = \int f y' \mu(ds) \quad for \quad f \in C(S, X)$$

which complete the proof of (3). Let us prove relation (2).

$$\begin{aligned} ||T||_{(p,q)} &= \sup\{q(T(f)); p(f) \le 1\} \\ &= \sup_{p(f) \le 1} \sup_{y' \in B^0_q} (y'(T(f))) \\ &= \sup_{y' \in B^0_q} \sup_{p(f) \le 1} (y'(T(f))). \end{aligned}$$

On the other hand, we have

$$\sup_{y' \in B_q^0} \sup_{p(f) \le 1} (y'(T(f))) = \sup_{y' \in B_q^0} \sup |\sum_{i=1}^n y' \mu(E_i) x_i|$$
$$= \sup_{y' \in B_q^0} |y'(\sum_{i=1}^n \mu(E_i) x_i)| = \sup q(\sum_{i=1}^n \mu(E_i) x_i) = ||\mu||_{(p,q)},$$

where the supremum is taken over all Σ -partition of S into $E_i \in \Sigma$ and all possible collections $x_i \in X$ with $p(x_i) \leq 1$, which proves (2) and (4). Conversely let $\mu; \Sigma \to L(X, Y'')$ satisfy (1) and (2), then for $f \in C(S, X), T(f) \in Y$, where T is defined by (3), the linear mapping $y' \to y'\mu$ of Y' into $M(\Sigma, X')$ is continuous with respect to the Ytopology in Y' and C(S, X)-topology in C'(S, X). Thus the linear operator $T(f) = \int f\mu(ds)$ of C(S, X) into Y is continuous and (2) holds.

COROLLARY 3.2. Let Y be semi-reflexive and $T; C(S, X) \to Y$ be continuous linear operator. Then there exists a unique operator-valued measure $\mu; \Sigma \to L(X, Y)$ such that

- (1) the mapping $y' \rightarrow y' \mu$ on Y' into $M(\Sigma, X')$ is continuous,
- (2) if T is (p,q)-defined operator, then $\parallel \mu \parallel_{(p,q)} = \parallel T \parallel_{(p,q)}$.
- (3) $T(f) = \int f\mu(ds), f \in C(S,X)$
- (4) $T'y' = y'\mu$

Conversely, if L(X, Y)-valued measure which satisfies that (1), then the linear operator $T; C(S, X) \to Y$ is defined by (3) and (4) is continuous with the condition (2).

Proof. Since Y'' = Y, the proof can be obtained by a slight modification of the proof of the above theorem.

References

- 1. C. Debieve, Integration of vector-valued functions with respect to vector-valued measurdes, Rev. Roum. Math. Pures. Apple. 26 7 (1981).
- 2. J. Diestel and J. J. Uhl, Vector measures, Ammer, Math. Soc, Math. Survey (1977).
- 3. N. Dunford and J. Schwartz, *Linear operators*, Part 1, Interscience Pub. Inc., New York (1958).

234

- 4. C. Foias and I Singer, Some remarks on the representation of linear operators in spaces of vector-valued continous functions, Rev. Roum. Math. Pures et Apple 5 (1960)
- 5 R.K. Goodrich, A Riesz representation theorem, Proc. Amer. Math. Soc. 24 (1970).
- 6. L. Narici and E. Beckenstein, Topological vector spaces, Marcel Dekker, Inc., New York (1985)
- 7 S. K. Roy and N. D. Chakraborty, Integration of vector-valued functions with respect to an operator-valued measure, Czech. Math. J. 36, Praha (1986).
- 8. K. Swong, A representation theory of continuous linear maps, Math. Ann. 155 (1964)
- 9. M. P. Ulanov, Vector-valued set functions and the representation of continuous linear mapping, Sibirsk Mat. Z. 9 (1968)

Department of Mathematics Education Kyungnam University, Masan, 631-701, Korea