INTERGRAL REPRESENTATION OF VECTOR-VALUED CONTINUOUS FUNCTIONS

Dong Hwa Kim

1. Introduction

Let S be a compact Hausdorff space, let X, Y be locally convex Hausdorff spaces over real and complex field. Let $C(S, X)$ denote the continuous functions from S into X with the topology of uniform convergence.

The purpose of this paper is to give an integral representation for continuous linear operator T on $C(S, X)$ into Y by means of integrals with respect to $L(X, Y)$ and we investigate some problems of the theory of vector-valued functions for an operator-valued measure.

2. Preliminaries and Notations

Let Σ be an σ-algebra of the closed subsets of S and $L(X, Y)$ be the space of all continuous linear operators on X into Y. Let Y^{\prime} and $Y^{\prime \prime}$ be dual and bidual of Y, respectively.

For each continuous semi-norm q of Y there exists a continuous semi-norm p on X such that $\left\{q(T(x)) ; x \in B_{p}\right\}$ is bounded, where $B_{p}=\{x \in X ; p(x) \leq 1\}$. By B_{p}^{0} we mean the polar set of B_{p}, i.e. the set $x^{\prime} \in X^{\prime}$ with $\left|<x, x^{\prime}>\right| \leq 1$ for all $x \in B_{p}$ and $p(x)=$ $\sup \left\{\left|<x, x^{\prime}\right\rangle \mid ; x^{\prime} \in B_{p}^{0}\right\}$. The topology of $C(S, X)$ is generated by the seminorms $p(f)=\sup _{s \in S} p(f(s))$, and the topology for $Y^{\prime \prime}$ is generated by the seminorms $q^{\prime \prime}\left(y^{\prime \prime}\right)=\sup _{y^{\prime} \in B_{9}^{\circ}}\left|<y^{\prime}, y^{\prime \prime}>\right|$. If $E \in \Sigma$ we denote the characteristic function of E by χ_{E}.

[^0]If $E \in \Sigma$ and $x \in X$ we identify the simple function $\chi_{E} \cdot x$ as an element of $C^{\prime \prime}(S, X)$ since this identification is an isometric isomorphism in [4] and [8]. The linear operator $T ; C(S, X) \rightarrow Y$ is continuous if and only if there exists a pairing (p, q) such that $\|T\|_{(p, q)}=$ $\sup \{q(T(f)) ; p(f) \leq 1\}$. It is well known that $T^{\prime \prime \prime}$ (the bitranspose of T) maps $C^{\prime \prime}(S, X)$ into $Y^{\prime \prime}$, and $\|T\|_{(p, q)}=\left\|T^{\prime \prime}\right\|_{(p, q)}$.

Defintion 2.1. An operator-valued measure $\mu ; \Sigma \rightarrow L(X, Y)$ said to be of bounded (p, q)-variation on $E \in \Sigma$ for a continuous semi-norm $p(q)$ on $X(Y)$ if

$$
\left\{q\left(\sum_{i=1}^{\infty} \mu\left(E_{\mathrm{z}}\right) x_{\imath}\right) ; \quad E_{1} \cap E_{\jmath}=\phi(i \neq j), x_{i} \in B_{p}\right\}
$$

is bounded and we define the (p, q)-variation of μ on $E \in \Sigma$,

$$
\|\mu\|_{(p, q)}=\sup _{y^{\prime} \in B_{q}^{o}}\left\{q\left(\sum_{i=1}^{n} y^{\prime} \mu\left(E_{\imath}\right) x_{i}\right) ; y^{\prime} \in Y^{\prime}, x_{i} \in B_{p}\right\} .
$$

Definition 2.2. A function $f ; S \rightarrow X$ said to be μ-integrable with respect to an operator-valued measure if
(1) f is $y^{\prime} \mu$-integrable (in the sense of [3]), and
(2) for each $E \in \Sigma$, there is an element $y_{E} \in Y$ such that

$$
y^{\prime}\left(y_{E}\right)=\int_{E} f y^{\prime} \mu(d s), \quad \text { for } \quad y^{\prime} \in Y^{\prime}
$$

Since Y is a locally convex Hausedorff space, we denote $y_{E}=$ $\int_{E} f(s) \mu(d s)$ and y_{E} is unique whenever it exists. It is well known that X-valued simple function is μ-integrable and the integral of such a function is given by

$$
\int_{E} f \mu(d s)=\sum_{i=1}^{n} \mu\left(E \cap E_{\mathrm{t}}\right) x_{\mathrm{i}}
$$

is an Y-valued measure on Σ.

Definition 2.3. $L\left(X, Y^{\prime \prime}\right)$-valued measure, defined on Σ is said to be weakly regular if the set function $y^{\prime} \mu(\cdot) x$ is regular for $x \in X$ and $y^{\prime} \in Y^{\prime}$.

From the above definition we have that

$$
\begin{aligned}
<\mu(E) x, y^{\prime}> & \left.=<T^{\prime \prime}\left(\chi_{E} \cdot x\right), y^{\prime}\right\rangle \\
& =\left\langle\chi_{E} \cdot x, T^{\prime} y^{\prime}>\right. \\
& =y^{\prime} \mu(E) x
\end{aligned}
$$

which weakly operator valued regular mesure. Suppose μ is any weakly regular operator-measure of bound $\left(p, q^{\prime \prime}\right)$ such that $T(f)=\int f d u$, then

$$
<T(f \cdot x), y^{\prime}>=\int f y^{\prime} \mu(d s)=<f \cdot x, T^{\prime} y^{\prime}>=<\mu(E), y^{\prime}>, x \in X .
$$

Since Y is locally convex space for $y^{\prime} \in Y^{\prime}, f \in C(S, X)$, if

$$
\int f y^{\prime} \mu(d s)=\int f y^{\prime} \lambda(d s)
$$

then we have $y^{\prime} \mu=y^{\prime} \lambda$. Hence $\mu=\lambda$.
Lemma 2.4. [5] For $E_{i} \in \Sigma, x_{\imath} \in X, E_{1} \cap E_{3}=\phi(i \neq j)$,
$i, j=1,2, \ldots, n$, we have that

$$
q^{\prime \prime}\left(\sum_{i=1}^{n} \chi_{E_{t}} \cdot x_{\imath}\right) \leq \max p\left(x_{i}\right)
$$

For $q^{\prime \prime}$ on $Y^{\prime \prime}$ there exists a p such that T is (p, q)-related and so $T^{\prime \prime}$ is ($p^{\prime \prime}, q^{\prime \prime}$)-related such that

$$
\begin{aligned}
q^{\prime \prime}\left(\sum_{i=1}^{n} \mu\left(E_{\imath}\right) x_{\imath}\right) & =q^{\prime \prime}\left(T^{\prime \prime}\left(\sum_{i=1}^{n} \chi_{E_{t}} \cdot x_{i}\right)\right) \\
& \leq\|T\|_{\left(p^{\prime \prime}, q^{\prime \prime}\right)} p^{\prime \prime}\left(\sum_{i=1}^{n} \chi_{E_{i}} \cdot x_{i}\right) \\
& \leq\|T\|_{(p, q)} \max p\left(x_{i}\right) .
\end{aligned}
$$

Therefore we see that $\mu(E) \in L\left(X, Y^{\prime \prime}\right)$, for each $E \in \Sigma$, since $q^{\prime \prime}(\mu(E) x) \leq\|T\|_{(p, q)} p(x)$.

Proposition 2.5. Let $T ; C(S, X) \rightarrow Y$ be a continuous linear operator, then the weakly operator-valued regular measure μ defined on Σ with values in $L\left(X, Y^{\prime \prime}\right)$, given by

$$
\mu(E) x=T^{\prime \prime}\left(\chi_{E} \cdot x\right) \quad \text { for } \quad E \in \Sigma, x \in X .
$$

Proof. For $y^{\prime} \in Y^{\prime}$ and $x_{i} \in X \quad(i=1,2, \ldots, n)$,

$$
\begin{aligned}
q^{\prime \prime}\left(\sum_{i=1}^{n} \mu\left(E_{i}\right) x_{i}\right) & =\sup _{y^{\prime} \in B_{q}^{0}}\left(y^{\prime} T^{\prime \prime}\left(\sum_{i=1}^{n} \chi_{E_{i}} \cdot x_{i}\right)\right) \\
& \leq\|T\|_{\left(p^{\prime \prime}, q^{\prime \prime}\right)} p^{\prime \prime}\left(\sum_{i=1}^{n} \chi_{E_{i}} \cdot x_{i}\right) \\
& \leq\|T\|_{(p, q)} \max _{i} p\left(x_{\mathbf{i}}\right) .
\end{aligned}
$$

For $y^{\prime} \in Y^{\prime}$ and $x \in X$, let $\lambda(E)=y^{\prime} \mu(E) x$, then

$$
y^{\prime} \mu(E) x=y^{\prime}\left(T^{\prime \prime}\left(\chi_{E} \cdot x\right)\right)=\left(\chi_{E} \cdot x\right)\left(T^{\prime} y^{\prime}\right) \quad \text { for } \quad E \in \Sigma,
$$

which is regular measure.

3. Representation of continuous linear operator

Every $L(X, Y)$-valued measure μ on Σ may be considered as being $L\left(X, Y^{\prime \prime}\right)$-valued, by the canonical mapping of X into $X^{\prime \prime}$. Therefore we can define $<\mu(E) x, y^{\prime}>=y^{\prime} \mu(E) x$ and we have

$$
q\left(y^{\prime} \mu(E) x\right) \leq q(\mu(E)) p(x), E \in \Sigma, x \in X .
$$

Let $\mu ; \Sigma \rightarrow L\left(X, Y^{\prime \prime}\right)$ be an operator-valued measure. By $M\left(\Sigma, X^{\prime}\right)$, the space of all regular X^{\prime}-valued measures of finite variations on $\Sigma, \quad y^{\prime} \mu \in M\left(\Sigma, X^{\prime}\right)$ is finitely additive.

Theorem 3.1. Let S be a locally convex Hausdorff space and $T ; C(S, X)$ Y be continuous linear operator. Then there exists a unique operatorvalued measure $\mu ; \Sigma \rightarrow L\left(X, Y^{\prime \prime}\right)$ such that
(1) the linear map $y^{\prime} \rightarrow y^{\prime} \mu$ on Y^{\prime} into $M\left(\Sigma, X^{\prime}\right)$ for each $y^{\prime} \in Y^{\prime}$ is continuous,
(2) if T is (p, q)-defined operator, then we have

$$
\|\mu\|_{(p, q)}=\|T\|_{(p, q)}
$$

(3) $y^{\prime}(T(f))=\int f y^{\prime} \mu(d s), f \in C(S, X), y^{\prime} \in Y^{\prime}$
(4) $T^{\prime} y^{\prime}=y^{\prime} \mu$ for $y^{\prime} \in Y^{\prime}$.

Conversely if $\mu ; \Sigma \rightarrow L\left(X, Y^{\prime \prime}\right)$ has properties (1) and (2), then the linear operator $T ; C(S, X) \rightarrow Y$ defined by (3) is continuous and (p, q) defined operator as (2), and whose adjoint is given by (4).

Proof. For $E \in \Sigma, \mu(E) ; X \rightarrow Y^{\prime \prime}$ is linear and from Lemma 3.2 we have

$$
\mu(E) x=T^{\prime \prime}\left(\chi_{E} \cdot x\right), \quad x \in X .
$$

For each continuous seminorms p, q on X, Y, respectively, we define

$$
\begin{aligned}
y \in Y, \quad y \rightarrow q(y) & =1<y, y^{\prime}>\mid \quad \text { and } \\
q\left(y^{\prime} \mu(E) x\right) & =q\left(y^{\prime} T^{\prime \prime}\left(\chi_{E} \cdot x\right)\right)=q\left(T^{\prime} y^{\prime}\left(\chi_{E} \cdot x\right)\right) \\
& \leq \sup _{\|f\| \leq 1} q\left(\left(T^{\prime} y^{\prime}\right)(f \cdot x)\right) \\
& \leq\|T\|_{(p, q)} p(f \cdot x) \leq\|T\|_{(p, q)}\|f\|_{C(S, X)} \cdot p(x)
\end{aligned}
$$

Furthermore from (3) we have the following property

$$
\begin{aligned}
y^{\prime}(T(f)) & =y^{\prime}\left(T\left(\sum_{i=1}^{n} \chi_{E_{i}} \cdot x_{\imath}\right)\right) \\
& =y^{\prime}\left(\sum_{i=1}^{n} \mu\left(E_{\mathfrak{i}}\right) x_{\mathfrak{i}}\right)=\sum_{i=1}^{n} y^{\prime} \mu\left(E_{\mathfrak{i}}\right) x_{i}
\end{aligned}
$$

Thus it follows that

$$
y^{\prime}(T(f))=\int f y^{\prime} \mu(d s) \quad \text { for } \quad f \in C(S, X)
$$

which complete the proof of (3). Let us prove relation (2).

$$
\begin{aligned}
\|T\|_{(p, q)} & =\sup \{q(T(f)) ; p(f) \leq 1\} \\
& =\sup _{p(f) \leq 1} \sup _{y^{\prime} \in B_{q}^{0}}\left(y^{\prime}(T(f))\right) \\
& =\sup _{y^{\prime} \in B_{q}^{0}} \sup _{p(f) \leq 1}\left(y^{\prime}(T(f))\right) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \sup _{y^{\prime} \in B_{q}^{0}} \sup _{p(f) \leq 1}\left(y^{\prime}(T(f))\right)=\sup _{y^{\prime} \in B_{q}^{0}} \sup \left|\sum_{i=1}^{n} y^{\prime} \mu\left(E_{\imath}\right) x_{\mathfrak{z}}\right| \\
& =\sup _{y^{\prime} \in B_{q}^{0}}\left|y^{\prime}\left(\sum_{i=1}^{n} \mu\left(E_{\mathfrak{z}}\right) x_{i}\right)\right|=\sup q\left(\sum_{i=1}^{n} \mu\left(E_{\mathfrak{z}}\right) x_{\imath}\right)=\|\mu\|_{(p, q)}
\end{aligned}
$$

where the supremum is taken over all Σ-partition of S into $E_{:} \in \Sigma$ and all possible collections $x_{i} \in X$ with $p\left(x_{i}\right) \leq 1$, which proves (2) and (4). Conversely let $\mu ; \Sigma \rightarrow L\left(X, Y^{\prime \prime}\right)$ satisfy (1) and (2), then for $f \in C(S, X), T(f) \in Y$, where T is defined by (3), the linear mapping $y^{\prime} \rightarrow y^{\prime} \mu$ of Y^{\prime} into $M\left(\Sigma, X^{\prime}\right)$ is continuous with respect to the Y_{-} topology in Y^{\prime} and $C(S, X)$-topology in $C^{\prime}(S, X)$. Thus the linear operator $T(f)=\int f \mu(d s)$ of $C(S, X)$ into Y is continuous and (2) holds.

Corollary 3.2. Let Y be semi-reflexive and $T ; C(S, X) \rightarrow Y$ be continuous linear operator. Then there exists a unique operator-valued measure $\mu ; \Sigma \rightarrow L(X, Y)$ such that
(1) the mapping $y^{\prime} \rightarrow y^{\prime} \mu$ on Y^{\prime} into $M\left(\Sigma, X^{\prime}\right)$ is continuous,
(2) if T is (p, q)-defined operator, then $\|\mu\|(p, q)=\|T\|_{(p, q)}$.
(3) $T(f)=\int f \mu(d s), f \in C(S, X)$
(4) $T^{\prime} y^{\prime}=y^{\prime} \mu$

Conversely, if $L(X, Y)$-valued measure which satisfies that (1), then the linear operator $T ; C(S, X) \rightarrow Y$ is defined by (3) and (4) is continuous with the condition (2).

Proof. Since $Y^{\prime \prime}=Y$, the proof can be obtained by a slight modification of the proof of the above theorem.

References

1. C. Debieve, Integration of vector-valued functions with respect to vector-valued measurdes, Rev. Roum. Math. Pures. Apple. 267 (1981).
2. J. Diestel and J. J. Uhl, Vector measures, Ammer, Math. Soc, Math. Survey (1977).
3. N. Dunford and J. Schwartz, Linear operators, Part 1, Interscience Pub. Inc., New York (1958).
4. C. Foias and I Singer, Some remarks on the representation of linear operators in spaces of vector-valued continous functions, Rev. Roum. Math. Pures et Apple 5 (1960)
5 R K. Goodrich, A Riesz representation theorem, Proc. Amer. Math. Soc. 24 (1970).
5. L. Naricı and E. Beckenstein, Topologıcal vector spaces, Marcel Dekker, Inc., New York (1985)
7 S. K. Roy and N. D. Chakraborty, Integration of vector-vahed functrons with respect to an operator-valued measure, Czech. Math. 3. 36, Praha (1986).
6. K. Swong, A representation theory of contınuous hnear maps, Math. Ann. 155 (1964)
7. M. P. Ulanov, Vector-valued set functions and the representation of continuous linear mapping, Slbirsk Mat. Z. 9 (1968)

Department of Mathematics Education
Kyungnam University,
Masan, 631-701, Korea

[^0]: Received Ocotober 11, 1995.
 This paper was supported by the Research Foundation of Kyungnam University 1994.

