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INTERGRAL REPRESENTATION OF
VECTOR-VALUED CONTINUOUS FUNCTIONS

DonGg Hwa KiMm

1. Introduction

Let § be a compact Hausdorfl space, let X, ¥ be locally convex
Hausdorff spaces over real and complex field. Let C(S, X) denote the
continuous functions from S into X with the topology of uniform con-
vergence.

'The purpose of this paper is to give an integral representation for
continuous linear operator 7" on C(S, X) into ¥ by means of integrals
with respect to L{ X, Y) and we investigate some problems of the theory
of vector-valued functions for an operator-valued measure.

2. Preliminaries and Notations

Let T be an o-algebra of the closed subsets of S and L(X,Y") be the
space of all continuous linear operators on X into Y. Let Y’ and Y
be dual and bidual of Y, respectively.

For each continuous semi-norm ¢ of Y there exists a continuous
semi-norm p on X such that {¢{(T(z));z € B,} is bounded, where
B, = {z € X;p(z) < 1}. By B) we mean the polar set of B,, i.e.
the set 2’ € X' with | < 2,2' > | £ 1 for all z € B, and p(z) =
sup{| < z,2' > |;2' € BJ}. The topology of C(S,X) is generated
by the seminorms p(f) = sup,csp(f(s)), and the topology for Y is
generated by the seminorms ¢"(y"} = supyiepe | <9,y > [ HE € X
we denote the characteristic function of E by yg.
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If E € ¥ and £ € X we identify the simple function yg - = as an
element of C"(S, X} since this identification is an isometric isomor-
phism in {4] and [8]. The linear operator T;C(S,X) — Y is contin-
wous if and only if there exists a pairing (p,¢) such that ||T), o) =
supig(T(f)); p(f) < 1}. It is well known that T"(the bitranspose of
T) maps C'(5,X) into Y, and [Tll(p = IIT"[|pr3).

DEFINTION 2.1. An operator-valued measure y; ¥ — L(X,Y) said

to be of bounded (p, ¢)-variation on E € T for a continuous semi-norm
p(g) on X(Y) if

{Q(Z#(Ex)xt); E,n EJ = ?S(‘ # j),:tg € BP}

=1

is bounded and we define the (p, ¢)-variation of y on E € T,

n
i lp.0r= supyeg (9D ¥ u(B)z.)iy' € Y',zi € By},

=1

DEFINITION 2.2. A function f;$ — X said to be u- integrable with
respect to an operator-valued measure if

(1) f is y'p-integrable (in the sense of [3]), and
(2) for each E € T, there is an element yg € Y such that

y'(yx) = [E Fulds), for y ey’

Since Y is a locally convex Hausedorff space, we.denote yp =
S f(8)u(ds) and yg is unique whenever it exists. It is well known
that X-valued simple function is p-integrable and the integral of such
a function is given by

[ sutdo) =3 umn B,

1=1

is an Y-valued measure on X.
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DEFINITION 2.3. L(X,Y")-valued measure, defined on X is said to

be weakly regular if the set function y'u(-)z is regular for z € X and
! ’
yeY'.

From the above definition we have that
< Bz, y' > =<T"(xg ),y >
=< xg -z, Ty >
=y wW(E)z

which weakly operator valued regular mesure. Suppose ¢ is any weakly

regular operator-measure of bound (p,q") such that T'(f) = [ fdu,
then

<T(f-z),y >= /fy’,u(ds) =< f-2,Ty >=< u(E),y >,z € X.
Since Y is locally convex space for ' € Y, f € C(S, X), if
[ sy = [ ryxias),

then we have v’ = y'A. Hence p = ).
LEMMA 2.4. [5] For E, € £,z, € X,E\(\E, =¢(: # 1),

5,7 =1,2,...,n, we have that

@'} x. - z.) < maxp(z,).

=1

For ¢" on Y" there exists a p such that T is (p, ¢)-related and so T
is (p", ¢")-related such that

¢"(Q_ (BN, = ¢"(T"(Y_ Xk, - 7))
=1 =1

< Tl ey2" (O x5, - 1)
=1

< T\l (p,q) max p(z;).

Therefore we see that u(E) € L(X,Y"), for each E € I, since
¢"(u(E)z) < “T”(p,q)P(x)'
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PROPOSITION 2.5. Let T;C(S5,X) —= Y be a continuous linear op-

erator, then the weakly operator-valued regular measure p defined on
L with values in L{X,Y"), given by

p(Eye=T"(xg-z) for Ee€XzeX.

Proof. ¥Yory' € Y'andz, € X (:1=1,2,..,n),

" ME)z:) = supyeps(y'T" (Y xe. - 2.)
1=1

1=1

n
STl g xE, - )

=1

< Tl o, p(21).

For y' €Y' and z € X, let A(F) = y'u(E)zx, then

y'u(B)e = y'(T"(xe - 7)) = (xg - z)(T'y') for E€X,

which is regular measure.

3. Representation of continuous linear operator

Every L(X,Y }-valued measure g on ¥ may be considered as being
L(X,Y")-valued, by the canonical mapping of X into X". Therefore
we can define < u(E)z,y’ >= y'u(E)r and we have

o(y'w(E)z) < q(u(E))p(x), E € T,z € X.

Let y; ¥ — L(X,Y") be an operator-valued measure. By M(Z, X'),
the space of all regular X'-valued measures of finite variations on
Z, y'peM(Z,X'") s finitely additive.

THEOREM 3.1. Let S be a locally convex Hausdorff space and T; C(S, X) -
Y be continuous linear operator. Then there exists a unique operator-
valued measure ;¥ — L(X,Y") such that

(1) the linear map y' — y'p on Y' into M(Z,X") for each y' € Y’

is continuous,
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(2) if T is (p, q)-defined operator, then we have

“ # “(p.q)=“ T “(M) ’

(3) ¥'(T() = [ fy'u(ds), f € C(8,X), y' € Y
(4) T'y' =y'n for y' €Y'
Conversely if ;T — L(X,Y") has properties (1) and (2), then the
linear operator T; C(S,X) — Y defined by (3) is continuous and (p, ¢)-
defined operator as (2), and whose adjoint is given by (4).

Proof. For E € ¥, u(E); X — Y" is linear and from Lemma 3.2 we
have
p(Eje =T"(xg-z), z€X.

For each continuous seminorms p,q on X,Y, respectively, we define
yeY, yogy=I<yy >| and
¢y’ 1(E)z) = q(y'T" (x5 - 2)) = o(T'y'(x£ - 2))
< supys<s 9((T'Y' NS - 2))
< Tlpop(f - 2) < Tl llfllos,x) - p(2).

Furthermore from (3) we have the following property
y'(T(N)) =y'(TQ_ x&. - =)
=1

- y’(z M Ey)x,) = Z ¥ u( Bz,

=1 =]

Thus it follows that
Y (T(f)) = ] fyu(ds) for feC(S,X)

which complete the proof of (3). Let us prove relation (2).

T Hp.qy = sup{e(T(f)); p(f) < 1}
= sup,(fy<i supypegg(y'(T(f)))
= supye go suPy(py <1 (¥ (T(£)))-
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On the other hand, we have

SUPy e g2 SUPy( f)SI(y'(T(f m= SUPy e B2 SUP | Z y u(E)z|

=1

= subyepy 1y’ (Y #(Ee)| = supg(D | p(B)z.) = llulip.g);
=1

=1

where the supremum is taken over all ¥-partition of S into E, € &
and all possible collections z; € X with p(z,) < 1, which proves (2)
and (4). Conversely let u; £ — L(X,Y") satisfy (1) and (2), then for
f€C(S,X),T(f) € Y, where T is defined by (3), the linear mapping
¥ - y'p of Y into M(Z,X’) is continuous with respect to the Y-
topology in Y’ and C(S,X)-topology in C'(S,X). Thus the linear
operator T(f) = [ fu(ds) of C(S,X) into Y is continuous and (2)
holds.

COROLLARY 3.2. Let Y be semi-reflexive and T;C(S5,X) — Y be
continuous linear operator. Then there exists a unique operator-valued
measure g; £ — L(X,Y') such that

(1) the mapping y' - y'u on Y’ into M(3, X') is continuous,
(2) if T is (p, q)-defined operator, then || p lf( p,@) =I| T |l p,9)-
(3) T(f) = [ fu(ds), f € C(S,X)
(4) Ty =y'p
Conversely, if L(X,Y )-valued measure which satisfies that (1), then
the linear operator T; C(5,X) — Y is defined by (3) and (4} is contin-
uous with the condition (2).

Proof. Since Y" =Y, the proof can be obtained by a slight modifi-
cation of the proof of the above theorem.
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