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ON THE COMMUTANT OF TYPE I
VON NEUMANN ALGEBRAS

JONG GEOUN KIM

1. Introduction

The study of non-self-adjoint operator algebras on Hilbert space was
begun in 1974 by Aveson (1). Recently, such algebras have been found
to be of use in physics, in electrical engineering, and in general systems
theory. Of particular interest to mathematicians are reflexive algebras
with commutative lattices of invariant subspaces. One of the most
important classes of such algebras is the sequence Alglq, Algly, ---,
AlgL, of "tridiagonal” algebras, discovered by Gilfeather and Larson
(4). We shall often disregard the distinction between an orthogonal
projection and its range space. Let £ be a family of orthogonal projec-
tions acting on a Hilbert space H. Then Alg( is an algebra containing
I { I represents the identity operator acting on H ) and AlgL is closed
in the weak operator topology.

In this paper, if Algl is a von Neumann algebra, we want to find
out what its type is. And we pursue a fragment of commutant theory
leading to a revealing and useful description of type I von Neumann
algebras. We will introduce the terminologies which are used in the
above general introduction and in the general theorems of this paper.
Let C be a subset of the class of all bounded operator acting on a Hilbert
space H. C is called self-adjoint if A* is in C for every A inC. C is a,
vector space over C and if C is closed under the composition of maps,
then C is called an algebra. C is called a self-adjoint algebra provided
A* is5 in C for every A in C. Otherwise, C is called a non-self-adjoint
algebra. C is a C*-algebra if C is a self-adjoint algebra which is contains
I and closed in the norm topology. C is a von Neumann algebra if C is
a C*-algebra which is closed in the weak operator topology. For any
subset A4 of B(H), we shall denote by A’ the commutant of A :

A'={B e B(H): BA= AB for any 4 € A}.
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For any subset A of B(H), A’ is an algebra which contains the identity
operator I in B(H) ; moreover, it is easy to check that A’ is closed
in the strong operator topology (equivalently, it is closed in the weak
operator topology). If A is self-adjoint, then A" is a von Neumann
algebra. In particular, if C is a von Neumann algebra, then €’ is a von
Neumann algebra (19). Let C C B(H) be a von Neumann algebra and
C' C B(H) its commutant. Then C N’ is the common center of the
algebras C and C'. It is obvious that CNC' C B(H) is a ( commutative )
von Neumann algebra. A von Neumann algebra is called a factor if its
center is equal to the set of all scalar multiple of the identity operator.
Let M be a complex Hilbert space. A linear manifold in # is a subset
of H which is closed under vector addition and under mutiplication
by complex numbers. A subspace of H is a closed manifold. We shall
often disregard the distinction between an orthogonal projection and
its range space. Thus we consider a subspace lattice as consisting of
orthogonal projections or subspaces and we may use the same notation
to indicate either. This occurs most often in the technical arguments.
Let £ be a subset of all orthogonal projections acting on a Hilbert
space H. Then L is called a lattice if £ is closed under the operators
"A” and "V” for finitely many elements of £. If £ is a lattice of
orthogonal projections acting on H, Algl denotes the algebra of all
bounded operators acting on H that leave invariant every orthogonal
projection in £, that is,

Algl = {A€B(H): AE = EAE forany E € L}.

A subspace lattice £ is a strongly closed lattice of orthogonal projec-
tions acting on a Hilbert space H, containing 0 and I ( O represents
zero operator acting on H ). Dually, if C is a subalgebra of the set
of all bounded operators acting on H, then LatC is the lattice of all
orthogonal projections invariant for each operator in . An algebra C
is reflexive if ¢ = AlgLatC. A lattice £ is reflexive if £ = LatAlgL.
A lattice £ is commutative if each pair of orthogonal projections in
L commutes. Especially, if £ is a commutative subspace lattice, or
CSL, then AlgL is called a CSL algebra. Subspace lattices need not be
reflexive ; however, commutative ones are reflexive (4). If fy, fa, «- -,
fn are vectors in some Hilbert space, then {f;, f2, +<+, fa] means the
subspace generated by vectors fi, f2, +, fa.
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2. Examples of Algl

EXAMPLE 1. Let H be a separable Hilbert space with an orthonor-
mal basis { e;, eg, --+ } and let £ be the lattice generated by { [ey, €2},
[e3, 4], {es, €], -+ }. Then VF = H and AlgL consists of matrices of
the following form:

* %
* ¥
* ok
x %
with respect to the basis { ¢;, ey, - -+ }, where all non-starred entries

are zeros. Since AlgL is self-adjoint, Algl is a von Neumann algebra.

EXAMPLE 2. Let H be a separable Hilbert space with an orthonor-
mal basis { e;, €3, --- } and let £ be the lattice generated by F = {
le1, ea], [e3, eq, 5], [es, €7, €8,€5], - -+ }. Since AlgL conmsists of matrices
of the following form:

/** \

* %

* ¥ #*
* % *
L I

¥ ¥ ¥ *
* ¥ O x *
* ¥ K *

* ¥ % *

\ )

with respect to the basis { e;, ez, --- }, where all non-starred entries
are zeros, Algl is a von Neumann algebra and Algl = AlgF.

EXAMPLE 3. Let H be a separable Hilbert space with an orthonor-
mal basis { ¢, : 1 =1, 2, --- } and let £, be the subspace lattice
generated by F = { [e2:-1], [e2i~1,€20,€2041) 12 = 1,2, .-+ }. Then
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VF = H and AlgL,, consists of matrices of the following form :

*x  k
*
* ¥ ¥
*
*
with respect to the basis { e;, eg, --- }, where all non-starred entries

are zeros. Because Algl., is not self-adjoint, Algl., is not a von
Neumann algebra. We know that Algl,, is a tridiagonal algebra.

EXAMPLE 4. Let H be a separable Hilbert space with an orthonor-
mal basis { e;, ez, - }andlet F = {[e,]:2=1,2,--- } and let £
be the lattice generated by F. If A is in Algl, then A is the matrix
which has the form :

with respect to the basis { e;, €3, --- }, where all non-starred entries
are zeros. Hence AlgL is a von Neumann algebra. Let {E,} be a subset
of £, where E, is the orthogonal projection from H onto [ e;, ez, -+,
e;]. Then { E, } converges strongly to I. Since I is not in £ and E,
isin £ (2 =1,2,---), L is not strongly closed. In particular, £ is not
complete.

3. General Theorems

Let H be a separable Hilbert space and C ¢ B(H). C is a von
Neumann algebra if C is a C*-algebra which is closed in the weak
operator topology. If £ is a family of orthogonal projections acting
on H, then Algl is an algebra containing I and closed in the weak
operator topology. Therefore in order to prove that Algl is a von
Neumann algebra, it is sufficient to show that Algl is self-adjoint.
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THEOREM 1. Let £ be a family of orthogonal projections acting on
a Hilbert space H. Then

(1) Algl is an algebra containing I ( I represents the identity
operator actingon H ) .

(2) AlgL is closed in the norm topology .

(3) AlgL is closed in the weak operator topology.

LEMMA 2. Let £y and £, be families of orthogonal projections act-
ing on a Hilbert space H. If L1 C L2, then Algl, C AlgL,.

Proof. Let A be in AlgL;. Then AE = EAFE for all E in £,. Since
Ly C Ly, AE=EAFE for all E in £;. Hence A is in Alg(;.

Let E and F be orthogonal projections acting on a Hilbert space
‘H. Then a partial order relation < is described as follows : E < F if
and only if EF = FE = E. E, F are said to be mutually orthogonal
if EF = 0. And the image R(F) = {Ef : f € H} is called the rang
space of E.

LEMMA 3. Let F be a family of mutually orthogonal projections
acting on H. If L is the lattice generated by F, then Algl = AlgF.

THEOREM 4. Let H be a separable Hilbert space let 7 be a family
of mutually orthogonal projections acting on ‘H such that VF = I. If
L is the lattice generated by F, then AlgL is a von Neumann algebra.

Proof. From Theorem 1, Algl is algebra containing I and closed
in the weak operator topology. Therefore it is sufficient to show that
AlgL is self-adjoint. Let A be an element in AlgL. Suppose that F =
{ By, B2, --- }, where E, is an orthogonal projection acting on H for
alli = 1,2, ... Since Aisin Algl, AE, = E,AE, foralli =1,2,--..
Since AEL = EfAEL foralli =1,2,.--, A* is in Algl by Lemma
3, i.e. AlgL is self-adjoint.

THEOREM 5. Let H be a separable Hilbert space and let F be a
mutually orthogonal family of subspaces of H and L be the lattice
generated by F. If VF # H, AlgL is not a von Neumann algebra.

If E and F are orthogonal projections from a Hilbert space H onto
closed subspaces Y and Z, respectively, then

E<FiHandonlyifY C Z.
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THEOREM 6. Let £ be a lattice of orthogonal projections acting on
a separable Hilbert space H and let ¥ = { F : F is a nonzero minimal
element in L}. Then F is a mutually orthogonal family.

Proof. Let E and F be elements of F. Suppose that EA F' £ 0 and
E#F. Since EAF < F and F is minimal, EAF = F. Hence FF < E.
Since E and F are minimal, E=F. So EAF =0or E= F. Hence
F is a mutually orthogonal family.

THEOREM 7. Let L be a family of orthogonal projections acting on
a Hilbert space H. Then Algl is a von Neumann algebra if and only
if Algl = L',

Proof. Necessity : If Aisin L', then AE = EA for all E in £. Since
AE = AEE =EAE forall Ein £, A is in AlgL. Since AlgL is a von
Neumann algebra, A* is in Algl for all A in Algl. If A is in Algl,
then AF = FAFE and A*E = EA*E for all E in £. Hence AE = EA
for all Ein £. Thus A is in £'.

Sufficiency : It is sufficient to show that Algl is self- adjoint. Sup-
pose that A is in AlgC. Since Algl = L', AE = EAFE and AE = EA
forall Ein £. Hencefor all Ein L EA = EAFE, thatis, A*E = FA*E
for all E in £. Therefore A* is in AlgL.

LEMMA 8(2). Let H be a Hilbert space and let £ be a commutative
subspace lattice of orthogonal projections acting on ‘H. Then L is
reflexive.

LEMMA 9. Let H be a separable Hilbert space and let £ be a com-
plete lattice of orthogonal projections acting on H. Let F = { F : F
is a nonzero minimal element in L}. If E is a nonzero element in L,
then there exists Ey in F such that Ey < E.

THEOREM 10. Let £ be a commutative subspace lattice of orthogo-
nal projections acting on a separable Hilbert space H. If Algl is a von
Neumann algebra, then there exists a family F of mutually orthogonal
projections in £ which generates completely L.

Proof. Let F = {F : F is a nonzero minimal element in £}. Then
F 1s a mutually orthogonal family by Theorem 6. We shall show that
L = G(F), where G(F) is the copmpete lattice generated by F. Let E
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be a nonzero element in L. Suppose that E is not in G(F). If EF = 0
for all F in F, then E(VF) = 0. Since E is in £, there exists an
element Ey in F such that Ey < E by Lemma 9. Since Eo(VF) # 0,
E(VF) #0. 1t is a contradiction.

Suppose that EF' # 0 for some F € F. Since EAF is in £ and F
s minimal, EAF = F., Hence F < E. Put /, = {D € ¥ : D < E}.
Then VF; < E. Suppose that VF; = E. Since G(F) is complete, VF;
is in G(F). It is a contradiction.

If VF, is a proper subprojection of E, then E ~ VF; is in £. For
each A in AlgL, by Theorem 7

A(E - Vfl) = AFE - A(VF])
=FA-(VFH)A
=(E — Vfl)A.

Hence E—VF isin LatAlg{. Since £ = LatAlgL by Lemma 8, E-VF,;
is in £. By Lemma 9, there exists a nonzero minimal element E; in £
such that Fy < E —VF,. It is a contradiction. Since £ contains G(F),
L = G(F).

THEOREM 11(19). Let H be a Hilbert space and let C C B(H) be a

*-algebra of operators with I in C. Then the following statements are
equivalent.

(1) C is a von Neumann algebra.
(2) C =C", where C" is the bicommutant of C.

Let C C B(M) be a von Neumann algebra and let E be an orthogonal
projection acting on a Hilbert space H. We shall write

EC={EA:AcC).

DEFINITION 12. Let M be a Hilbert space. Let C C B(?) be a von
Neumann algebra and let P¢ be the set of orthogonal projections in C.
(1) Two orthogonal projections E, F in Pc are said to be equiv-
alent, and this relation is denoted by E ~ F, if there exists

a partial isometry U in C such that £ = U*U and F = UU*
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; then UE = U = FU. We say that E is dominated by F,
and we denote by E < F this relation, if E is equivalent to a
subprojection of F,

(2) An orthogoenal projection E in Pg is said to be abelian if ECE
is commutative.

(3) An orthogonal projection E in P¢ is said to be finite if when-
ever £ ~ F < FE for an orthogonal projection F in Pe¢, it
follows that F = E.

(4) An orthogonal projection E in Pg is said to be a central pro-
Jection if it belongs to the center C N’ of C.

(5) An orthogonal projection F in P is said to be properly infinite
if whenever PE is finite, for each central projection P in Pg¢,
it follows that PE = 0.

(6) The central cover C4 of A in C is the greatest lower bound of
all central projection G in P¢ such that GA = A.

(7) An orthogonal projection E in P is said to be faithful if Cg =
I

DEFINITION 13. Let H be a Hilbert space and let C C B(H) be 2
von Neumann algebra.

(1) C is said to be finite if I is a finite orthogonal projection.

(2) C is said to be semifinite if any nonzero central projection
contains a nonzero finite orthogonal projection.

(3) C is said to be of type I if any nonzero central projection con-
tains a nonzero abelian orthogonal projection.

(4) C is said to be of type II if it is semifinite and it does not
contain any nonzero abelian orthogonal projection.

(5) C is said to be of type III if it does not contain any nonzerc
finite orthogonal projection.

(6) C is said to be of type Iy, if it is finite and of type L.

(7) Cis said to be of type I if it is not finite and it is of type 1.

(8) C is said to be of type I if it is finite and of type II.

(9) C is said to be of type Il if it is not finite, but it is of type IL.

THEOREM 14(19). Let H be a Hilbert space and C C B(H) be a von
Neumann algebra. C is of type I if and only if any nonzero orthogonal
projection in C contains an abelian nonzero orthogonal projection.
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LEMMA 15. Let H be a separable Hilbert space and let C C B(H)
be a von Neumann algebra. Then C is finite if and only if dimH < o0.

LEMMA 16. Let H be a separable infinite Hilbert space with an
orthonormal basis { ey, €2, --- }andlet F ={[eil::1=1,2,.-- }. If
L is th lattice generated by F, then AlgL is of type I.

THEOREM 17. Let M be a separable infinite Hilbert space and let F
be a family of mutually orthogonal projections acting on M such that
VF = [. If L is the lattice generated by F, then Algl is of type I.

Proof. Suppose that F = { E;, E,, --- } and H, is the subspace of
H such that E,(H) =H, foralli =1, 2, ---. Let A bein AlgL. Since
Algl = AlgF by Lemma 3, A is in AlgF. Hence A has the following
matrix form on ), &H,

H, H, Hs
An
Ass
0

where 4,, : H, — H, is the operator such that A,; = A4 ly, for all
1=1,2,-.-.

Let E be a nonzero orthogonal projection in Algl. Then E has the
following matrix form on }_, @H, :

where F,; is the orthogonal projection acting on H, such that E,, =
Ely, forallz =1, 2, --- and Eg; is nonzero for some k. If Eyy is a
nonzero orthogonal projection acting on Hj for some &, Ey; contains
a subprojection Fy; of rank one. Let F be the orthogonal projection
acting on Y, @H, such that ExF |3, = Fi and E, F ln; =0if ¢ £k
or 3 # k. Then F isin Algl and F' is a nonzero abelian subprojection
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of E. Hence AlgC is of type I by Theorem 14. By Lemma 15, AlgL is
of type l.

Let M C B(H) be any set of bounded operators and £ be an or-
thogonal projection acting on H. We shall write

Mg = {ES |ng): § € M} C B(R(E)).

THEOREM 18(19). Let ‘H be a Hilbert space and let C C B(H) be
a von Newmmann algebra and E in Pe. Then
(1) Cg C B(R(E)) and (C')g C B(R(E)) are von Neumann alge-
bras.
(2) (Ce)' =(C)E.
(3) ECE = Cg ( *-isomorphism of *-algebras).

PrOPOSITION 19(20). Let C C B(H) be a von Neumann algebra.
Then C is of type I if and only if C contains a faithful abelian orthogonal
projection.

Let M C B(H) be any set of bounded operators and let A C H be
any set of vectors. For notational convenience we define

MX ={Af : Aec M, fe X}

We say that & is cyclic for M if [MX] = H. We call X separating for
MifAe Mand Af =0forall f€e X imply A=0. X ={f}
consists of one vector f, we apply these terms to the vector itself.

PROPOSITION 20. Let H be a Hilbert space. Let C C B(H) be a
*-algebra of bounded operators. Then
(1) A vector f in M is cyclic for C if and only if f is separating for
C'.
(2) For any vector f in M, the orthogonal projection E from H
onto [Cf] belongs to C'.

Proof. (1) Let f be cyclic and suppose that A’ € €' with A'f = 0.
Then A'Af = AA'f = 0, for each A in C, and hence A’ vanishes on
[Cfl = H,s0 A" = 0.
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Conversely, if E is the orthogonal projection from H onto [Cf], then
Ef = f,since I isin C. Now if A and B are elements in C, then ABf
is in Cf, so that Cf is invariant under C, as is, therefore [Cf]. This
means that FAE = AF for each A in C, so that also FA*E = A*F,
because C is *-algebra. Thus FA = FAFE = AFE on taking adjoints,
and EisinC'. Now (I — E)}f = f — f =0, and because { — E is in
C and f is separating for C', I = E or [Cf] = H. So f is cyclic for C.
This proves (1) and incidentally (2).

THEOREM 21(20).. If an abelian von Neumann algebra C has a
cyclic vector, then C is maximal abelian, i.e., C =(’,

LEMMA 22(20).. Let H be a separable Hilbert space and let C C
B{(H) be a von Neumann algebra. If E in C is a faithful orthogonal
projection, then C' = (C'E.

THEOREM 23. Let H be a separable Hilbert space. If C C B(H) is
a of type I von Neumann algebra, then C' is also of type L

Proof. First suppose C is abelian and let G be a nonzero central
projection. Take any nonzero vector f in R(G) and let E be the or-
thogonal projection from M onto [C f]. By Proposition 20(2), Eisin C'.
Also B < G and by Theorem 11 and Theorem 18, (C')g = (Cg)’. But
CC ' s0Cg C{C)p = (Cg) and since f is cyclic for Cg on R(E),
Theorem 21 gives Cg = (Cg)’. Thus EC'E = (C')g = (Cg) = Cg by
Theorem 18, so E is an abelian orthogonal projection for '. For the
general case, let F' be a faithful abelian orthogonal projection in € by
Proposition 18. Then C' 22 C'F = (C")r = (CF)' by Theorem 18 and
Lemma 22. Also Cp & FCF (abelian), by Theorem 18. By the abelian
case, C’ is of type 1.

From Theorem 17 and Theorem 23, we can get the following corol-
lary.

COROLLARY 24. Let H be a separable infinite Hilbert space and
let F be a family of mutually orthogonal projections acting on H such
that VF = I. If L is the lattice generated by F, then (Algl)' is of
type L
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