Pusan Kyŏngnam Math. J. 11(1995), No. 2, pp. 175-185

STUDY OF THE BEST DEFORMATION FOR EXTENDING HARDY SPACES AND ITS APPLICATIONS

YOUNG-MAN NAM

Let D be an open unit disc, T be the unit circle in the complex plane. The Hardy space H^p (0 consists of all functionsholomorphic in D for which

$$||f||_p = \begin{cases} \lim_{r \to 1} \left[\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right]^{\frac{1}{p}}, & 0$$

is finite. If we define

$$M_p(f,r) = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}, \quad 0
$$M_{\infty}(f,r) = \sup\left\{ |f(re^{i\theta})| : 0 \le \theta \le 2\pi \right\},$$$$

we can rewrite

$$||f||_p = \lim_{r \to 1} M_p(f, r), \quad 0$$

A function bounded and holomorphic in D is said to be an inner function if its boundary values have modulus 1 almost everywhere. A Blaschke sequence is a (finite or infinite) sequence $\{a_n\}$ of complex numbers satisfying the conditions; $0 < |a_n| < 1$ and $\sum(1 - |a_n|)$ is finite. An important class of inner function is the Blaschke product. A Blaschke product B(z) with zeros $\{a_n\}$ is a function defined by a formula;

$$B(z) = \prod \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \bar{a}_n z}$$

Received September 27, 1995.

This research was supported by the Ministry of Education Grant, 1994.

for a Blaschke sequence $\{a_n\}$. The set of Blaschke products is uniformly dense in the set of inner function by the Frostman's theorem [9,10].

Let B^p (0) denote the space of functions <math>f(z) holomorphic in D for which

$$\frac{1}{2\pi} \int_0^1 \int_0^{2\pi} |f(re^{i\theta})| (1-r)^{\frac{1}{p}-2} d\theta dr$$

is finite. If we use the quantity $M_p(f,r)$, we can rewrite as following;

$$||f||_{B^p} = \int_0^1 (1-r)^{\frac{1}{p}-2} M_1(f,r) dr.$$

It turns out H^p is a subspace of B^p , especially $B^p = H^p$ for $p = \frac{1}{2}$. It was found [3,12], H^p is dense in B^p and two spaces have the same continuous linear functionals. This makes it possible to identify B^p with the closure of H^p in its second dual of H^p [1,5]. Thus this deformation space B^p is in some respects nicer than H^p space.

Now we introduce the weighted Bergman space $A^{p,q}$ [7,11] and develop some of properties on $A^{p,q}$ space. If f(z) is holomorphic in D and 0 and <math>q > 0 we define the weighted L^q norm by

$$\int_0^1 \int_0^{2\pi} |f(re^{i\theta})|^q (1-r)^{\frac{1}{p}-2} d\theta dr.$$

If it is finite we say f(z) belongs to $A^{p,q}$. This space is more extended than B^p , especially $A^{p,q}$ is equal to B^p when q = 1, at that time there are many interesting results on it.

G. Caughram and L. Shields raised the question whether there exits a singular inner function whose derivative is in H^p $(p = \frac{1}{2})$. L. Duren, W. Romberg and L. Shields [6] proved that the derivative of every Blaschke product lies in B^p for all p (0 . In [16], W. Rudin $showed that if the zeros <math>\{a_n\}$ of a Blaschke product satisfying the condition

$$\sum (1-|a_n|)\log \frac{1}{1-|a_n|} < \infty,$$

then the derivative of B(z) lies in $B^{\frac{1}{2}}$. Also, P. Ahern and D. Clark [2] proved that if $\sum (1 - |a_n|)^{\frac{1}{2}} < \infty$, and $\sum (1 - |a_n|)^{\frac{1}{2}} \log \frac{1}{1 - |a_n|} =$

 ∞ , then there is a Blaschke product B(z) with zerors $\{a_n\}$ satisfying $B'(z) \in B^{\frac{2}{3}}$ and $B'(z) \in H^{\frac{1}{2}}$. D. Protas [15] generalized this property as followings that if the zerors $\{a_n\}$ satisfy $\sum (1 - |a_n|)^{\alpha} < \infty$ then $B'(z) \in B^{\frac{1}{1+\alpha}}$ for some $\alpha \quad (0 < \alpha < 1)$, and $B'(z) \in H^{1-\alpha}$ for $\alpha \quad (0 < \alpha < \frac{1}{2})$. We could not translate all the B^p results into $A^{p,q}$ space.

In this paper, we find some results in deformations of H^p spaces and consider the relation between the distribution of B(z) and $\hat{B}(z)$. There are several known conditions on the distribution of Blaschke sequences that imply the derivative of Blaschke products lies in the extended H^p space. The basic problem we consider is that of determining $A^{p,q}$ spaces to which the derivative of B(z) belongs.

For typographical reasons we frequently omit the superscript p in writing $||f||_{B^p}$. We first prove followings.

PROPOSITION 1. For each f in B^p , the following inequality holds for constant K_p (: depend on p).

$$|f(z)| \leq K_p ||f||_B (1-r)^{-\frac{1}{p}}.$$

Proof. Let R < r < 1, then

$$\begin{split} ||f||_{B} &\geq \int_{R}^{1} (1-r)^{\frac{1}{p}-2} M_{1}(f,r) dr \\ &\geq M_{1}(f,R) (\frac{1}{p}-1)^{-1} (1-R)^{\frac{1}{p}-1}. \end{split}$$

Hence

$$M_1(f,R) \leq (\frac{1}{p}-1)||f||_B(1-R)^{1-\frac{1}{p}}.$$

From this, the estimate follows by writing

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta|=R} \frac{f(\zeta)}{\zeta - z} d\zeta,$$

where $R = \frac{1}{2}(1 + |z|)$.

LEMMA 2. For each $f \in B^p$, $f_{\rho} \to f$ in B^p -norm as $\rho \to 1$, where $f_{\rho}(z) = f(\rho z)$.

Proof. Given $f \in B^p$ and $\varepsilon > 0$, choose r < 1 such that

$$\int_{R}^{1} (1-r)^{\frac{1}{p}-2} M_1(f,r) dr \leq \varepsilon \quad \cdots (2.1).$$

Since $M_1(f, r)$ is an increasing function of r, (2.1) remains valid when f is replaced by f_{ρ} . Now choose ρ so close to 1 that $|f_{\rho}(z) - f(z)| < \varepsilon$ on $|z| \leq R$. Then

$$\int_0^R (1-r)^{\frac{1}{p}-2} M_1(f_{\rho}-f,r) dr < \varepsilon ||1||_B$$

Combining this with (2.1), we have

$$||f_{\rho} - f||_{B} \le \varepsilon ||1||_{B} + 2\varepsilon,$$

so $f_{\rho} \to f$ in norm as $\rho \to 1$.

LEMMA 3. For each $f \in H^p$, $||f||_B \leq K_p ||f||_p$.

Proof. The above statement means that $H^p \subset B^p$, and gives the norm inequality. Also, H^p contains all functions holomorphic in a bigger disc, and such functions are dense in B^p by Lemma 2.

If we use above statements, the following fact is satisfied.

THEOREM 4. Let φ be in the dual $(B^p)^*$ of B^p for 0 , thenthere is unique function g such that

$$\varphi(f) = \lim_{r \to 1} \int_0^{2\pi} f(re^{i\theta}) g(e^{-i\theta}) d\theta, \quad f \in B^p,$$

where g(z) is holomorphic in D and continuous on D.

We consider some relations between the distribution of the zeros of the k-th derivative $B^{(k)}(z)$ of Blaschke product and the behavior of its Taylor coefficients

$$\hat{B}(z) = \frac{B^{(k)}(0)}{k!} \quad (k \ge 0).$$

Let f(x) be defined in a closed interval I and let

$$\omega(\delta) = \omega(\delta, f) = \sup |f(x_2) - f(x_1)|$$

for $x_1, x_2 \in I$, $|x_2 - x_1| \leq \delta$. The function $\omega(\delta)$ is called the modulus of continuity of f. If I is finite, then f is continuous in I if and only if $\omega(\delta) \to 0$ as $\delta \to 0$. For some $\alpha > 0$, we have $\omega(\delta) \leq c\delta^{\alpha}$, where cis independent of δ .

Recall that f(z) satisfies a Lipschitz condition of order n in D (denote $f \in \Lambda_n$) if and only if

$$|f(z_1) - f(z_2)| \le c|z_1 - z_2|^n$$

for $0 < n \leq 1$ where c is independent of z_1, z_2 and $z_1, z_2 \in D$. Similarly, $f \in \Lambda_n^*$ means that

$$|f(z_1) - f(z_2)| = o(|z_1 - z_2|^n).$$

It is obvious that functions in classes Λ_n, Λ_n^* are bounded and continuous. Only the case 0 < n < 1 is interesting: if n > 1, then $\omega(\delta)/\delta$ tends to zero with δ , f'(x) exists and is zero everywhere, and f is a constant. The function f belongs to Λ_1 if and only if f is integral of a bounded function.

Here, we apply these properties to the Hardy space. We recall that the function $f \in L^p(T)$ is in the class Λ^p_{α} , $(0 < \alpha < 1, 1 \le p < \infty)$ if its L^p -modulus of continuity

$$\omega_p(\delta) = \sup_{|\theta| \le \delta} \left[\int_T |f(\zeta e^{i\theta}) - f(\zeta)|^p d\zeta \right]^{\frac{1}{p}}$$

satisfies the condition $\omega_p(\delta) \leq c\delta^{\alpha}$. According to the Hardy and Littlewood theorem, the boundary values of a function ψ from the Hardy space H^p belong to the class Λ^p_{α} if and only if

$$\left[\int_{T} |\psi'(r\zeta)|^{\mathbf{p}} |d\zeta|\right]^{\frac{1}{p}} \leq c(1-r)^{\alpha-1}.$$

Newman and Shapiro [14] have proved that the Taylor coefficient of an inner function may have order $o(\frac{1}{k})$ only in the trivial case of finite Blaschke products. For all B(z), whose zeros satisfy the Newman condition

$$\sup_{k\geq 0}\frac{(1-|a_{k+1}|)}{(1-|a_k|)}<1,$$

J. Newman and S. Shapiro obtained the estimate

$$\hat{B}(k) = O(\frac{1}{k}),$$

where $\hat{B}(k)$ is the Taylor coefficients of B(k).

THEOREM 5. Let B(z) be a Blaschke product and let $\{z_k\}$ be its zero, then the following statements are equivalent:

(1) the sequence $\{z_k\}$ satisfies the Newman condition,

(2)
$$\ddot{B}(k) = O(\frac{1}{k}),$$

- (3) $\sum_{k \ge n} |\hat{B}(k)|^2 = O(\frac{1}{n}),$ (4) $B(z) \in \Lambda^p_{\frac{1}{p}}$ for some 1 , and
- (5) $\int_{T} |B''(r\zeta)| |d\zeta| \leq c(1-r)^{-1}$ for some constant c.

We show that condition (4) for p = 2 is equivalent to (3) (see [19]). In addition, from (5) it follows that $B(z) \in \Lambda_{\frac{1}{p}}^{p}$ for all $p \in (0, \infty)$ [13].

Proof. The implications $(2) \Rightarrow (3) \Rightarrow (4)$ is obvious, $(5) \Rightarrow (2)$ follows from the estimate

$$|r^{k-2}k(k-1)|\hat{B}(k)| \le rac{1}{2\pi} \int_T |B''(r\zeta)||d\zeta|$$

for $r = 1 - \frac{1}{k}$. We show that $(1) \Rightarrow (5)$ and $(4) \Rightarrow (1)$. $(1) \Rightarrow (5)$. We make use of the easily proved estimate [4]

$$|B''(z)| \le 2\sum \frac{1-|z_j|^2}{|1-\bar{z}_j z|^3} + (\sum \frac{1-|z_j|^2}{|1-\bar{z}_j z|^2})^2.$$

Let $z = r\zeta$ and integrate with respect to $\zeta \in T$, then we obtain

$$\begin{split} \int_{T} |B''(r\zeta)| |d\zeta| &\leq 2 \sum (1 - |z_{j}|^{2}) \int_{T} |1 - \bar{z}_{j}r\zeta|^{-3} |d\zeta| \\ &+ \{ \sum (1 - |z_{j}|^{2}) (\int_{T} |1 - \bar{z}_{j}r\zeta|^{-4} |d\zeta|)^{\frac{1}{2}} \}^{2} \end{split}$$

Since

$$\int_{T} |1 - \bar{z}_{j} r\zeta|^{-n} |d\zeta| \le c(1 - r|z_{j}|)^{1-n}, \quad (n > 1),$$

we have

$$\int_{T} |B''(r\zeta)| |d\zeta| \le c \sum \frac{1 - |z_{j}|^{2}}{(1 - r|z_{j}|)^{2}} + c \{ \sum \frac{1 - |z_{j}|^{2}}{(1 - r|z_{j}|)^{\frac{3}{2}}} \}^{2}.$$

From the condition $\hat{B}(k) = O(\frac{1}{k})$ it follows [18] that for $\alpha > 1$ one has

$$\sum (1 - |z_j|^2) (1 - r|z_j|)^{-\alpha} \le c (1 - r)^{1 - \alpha}.$$

Applying this inequality for $\alpha = 2$ and $\alpha = \frac{3}{2}$, we obtain

$$\int_T |B''(r\zeta)| |d\zeta| \le c(1-r)^{-1}$$

for some constant c.

 $(4) \Rightarrow (1)$. Let $B(z) \in \Lambda^p_{\alpha}$, $\alpha = \frac{1}{p}$, $p \in (1, \infty)$. From the known results regarding the approximation by Abel means there follows [8] that

$$\left[\int_{T}|B(\zeta)-B(r\zeta)|^{p}|d\zeta|\right]^{\frac{1}{p}}\leq c(1-r)^{\alpha},$$

whence

$$\int_T (1 - |B(r\zeta)|)^p |d\zeta| \le c(1 - r)^{\alpha p}.$$

By using the Carleson measure, the proof is complete.

Now we apply the derivative of B(z) to the deformation of B^p and find the condition that derivative of Blaschke product belongs to $A^{p,q}$ spaces. Of course we restrict the value of p within 0 .

THEOREM 6. Let B(z) be a Blaschke product with zerors $\{a_n\}$ such that $\sum (1-|a_n|)^q$ is finite for some $q \quad (0 < q < 1)$. Then the condition of $p \quad (0 implies <math>B'(z) \in A^{p,q}$.

In order to prove this theorem we use the following lemma.

LEMMA 7[17]. Let $\{a_n\}$ be a sequence in D. Then there exists constants $K, K_p(: depend on p)$ such that

$$\int_{0}^{2\pi} \frac{1}{|1-a_{n}re^{i\theta}|^{2p}} d\theta \leq \begin{cases} \frac{K_{p}}{(1-|a_{n}|r)^{2p-1}} & \text{if } p > \frac{1}{2} \\ K & \text{if } p < \frac{1}{2}. \end{cases}$$

Proof of Theorem 6. The derivative of B(z) is following formula;

$$B'(z) = \sum \frac{B_n(z)(1-|a_n|^2)}{(1-\bar{a}_n z)^2},$$

where $B_n(z) = \frac{B(z)(1-\bar{a}_n z)}{z-a_n}$, and this implies that

$$|B'(z)| \leq \sum rac{(1-|a_n|^2)}{|1-ar{a}_n z|^2} \leq 2 \sum rac{(1-|a_n|^2)}{|1-ar{a}_n z|^2}.$$

By the hypothesis, for fixed $q \quad (0 < q < 1)$,

$$|B'(z)|^q \leq 2^q \sum rac{(1-|a_n|)^q}{|1-ar{a}_n z|^{2q}}.$$

Integrate each side and use Lemma 7 for each $q (\frac{1}{2} < q < 1)$, then we obtain that

$$\int_{0}^{1} \int_{0}^{2\pi} |B'(re^{i\theta})|^{q} (1-r)^{\frac{1}{p}-2} d\theta dr$$

$$\leq 2^{q} K_{p} \sum (1-|a_{n}|)^{q} \int_{0}^{1} (1-r)^{\frac{1}{p}-1-2q} dr$$

is finite for $0 . If <math>0 < q < \frac{1}{2}$, we get that

$$\int_0^{2\pi} |B'(re^{i\theta})|^q d\theta \leq 2^q K \sum (1-|a_n|)^q.$$

Thus the proof is complete.

We are now prepared to discuss another conditions to find values of p and q or relations of its in $A^{p,q}$ space using the basic estimate of the inequality $|1 - \bar{a}_n r e^{i\theta}| \ge (1 - r)$.

THEOREM 8. Let $\{a_n\}$ be a Blaschke sequence with $\sum (1 - |a_n|) < \infty$ and $q < \frac{1}{2p}$, then $B'(z) \in A^{p,q}$ for each q > 1.

Proof. We consider the estimate derived from the finite Blaschke product as it is difficult to ensure the convergence of $\sum \frac{1-|a_n|}{|1-\bar{a}_n re^{i\theta}|^{2q}}$ for given q. Let

$$B_m(z) = \prod_{n=1}^m \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a}_n z}$$

be a finite Blaschke product, then the derivative of $B_m(z)$ is following;

$$B'_{m}(z) = \sum_{n=1}^{m} B_{n}(z) \frac{1 - |a_{n}|^{2}}{(1 - \bar{a}_{n}z)^{2}},$$

where $B_n(z) = B_m(z) \frac{1-\tilde{a}_n z}{z-a_n}$. This implies that

$$|B'_m(re^{i\theta})|^q \le 2^q (\sum_{n=1}^m \frac{d_n}{|1 - \bar{a}_n re^{i\theta}|^2})^q$$

for $1 - |a_n| = d_n$ $(n = 1, 2, 3, \cdots)$. By the Hölder inequality, we have

$$|B'_{m}(re^{i\theta})|^{q} \leq 2^{q} \left(\sum_{n=1}^{m} (d_{n}^{\frac{1}{q'}})^{q'}\right)^{\frac{q}{q'}} \sum_{n=1}^{m} \frac{d_{n}}{|1 - \bar{a}_{n}re^{i\theta}|^{2q}}$$
$$= 2^{q} \left(\sum_{n=1}^{m} d_{n}\right)^{\frac{q}{q'}} \sum_{n=1}^{m} \frac{d_{n}}{|1 - \bar{a}_{n}re^{i\theta}|^{2q}}$$

where $\frac{1}{q} + \frac{1}{q'} = 1$. By Lemma 7,

$$\begin{split} \int_{0}^{2\pi} |B'_{m}(re^{i\theta})|^{q} d\theta &\leq 2^{q} (\sum_{n=1}^{m} d_{n})^{\frac{q}{q'}} \sum_{n=1}^{m} d_{n} \int_{0}^{2\pi} \frac{d\theta}{|1 - \bar{a}_{n} re^{i\theta}|^{2q}} \\ &\leq 2^{q} K_{q} (\sum_{n=1}^{m} d_{n})^{\frac{q}{q'} + 1} (1 - r)^{-2q + 1}. \end{split}$$

Since $\sum d_n$ is finite, the value of the right side of the preceding inequality is finite independently of the choice *m*. Therefore, we have the following by the Lebesgue's theorem,

$$\int_0^{2\pi} |B'(re^{i\theta})|^q d\theta = \lim_{m \to \infty} \int_0^{2\pi} |B'_m(re^{i\theta})|^q d\theta$$
$$\leq 2^q K_q (\sum d_n)^{\frac{q}{q'}+1} (1-r)^{-2q+1}$$

Thus

$$\begin{split} &\int_{0}^{1} \int_{0}^{2\pi} |B'(re^{i\theta})|^{q} (1-r)^{\frac{1}{p}-2} d\theta dr \\ &= \lim_{m \to \infty} \int_{0}^{1} \int_{0}^{2\pi} |B'_{m}(re^{i\theta})|^{q} (1-r)^{\frac{1}{p}-2} d\theta dr \\ &\leq 2^{q} K_{q} (\sum d_{n})^{\frac{q}{q'}+1} \int_{0}^{1} (1-r)^{\frac{1}{p}-2q-1} dr. \end{split}$$

By the hypothesis, this integration is finite for $q < \frac{1}{2p}$. Therefore the proof is complete.

We notice the convergent relation of $\sum (1 - |a_n|)^q$ and $\sum (1 - |a_n|)$ is depend on q in the proof of the above theorem.

REMARK. If $\sum_{n \in \mathbb{N}} (1 - |a_n|)^q$ is finite then $\sum_{n \in \mathbb{N}} (1 - |a_n|)$ is also finite but the converse does not hold for each q < 1. On the other hand, this property is opposite to the mentioned argument for each q > 1.

References

- P. R. Ahern, The mean modulus and derivative of inner function, Indiana Univ. Math. J. 28 (1973), 311-347.
- and D. N. Clark, On inner functions with B^p derivative, Michi. Math. J. 23 (1976), 107-118.
- 3. ____, On inner function with H^p derivative, Michi. Math. J. 21 (1974), 115-127
- D. J. Caveny, W. P. Novinger, Boundary zeros of functions with derivative in H^p, Proc. Amer. Math. Soc. 25 (1970), 776-780.
- J. A. Cima, M. I. Stessin and T. H. McGregor, Recapturing functions in H^p spaces, Indiana Univ. Math. J. 43 (1994), 205-220.
- 6. L. Duren, W. Romberg and L. Shields, Linear functionals on H^p spaces with 0 , J. Reine Angew. Math. 238 (1969), 32-60.
- 7. R. V. Guseinov, On anisotropic Hardy inequalities and their applications, Russian Acad. Sci. Sb. Math. 79 (1994), 141-166.

- 8. E. Hernandez, Factorization and extrapolation of pairs of weights, Math. Sci Research Institute, Berkeley, Calif., 1988.
- 9 K. Izuchi, Factorization of Blaschke product, Michi. Math. J 40 (1993), 53-75
- 10. N. J. Kalton and D. A. Trautman, Remark on subspaces of H^p with 0 ,Mich. Math. J. 29 (1982), 163-170.
- 11 H. O. Kim, Derivatives of Blaschke products, Pacific J. of Math. 114 (1984), 175-190.
- 12. K. Matsuzaki, Teichmüller spaces with variable bases in the universal Teichmuller space, Titech Math 06-92(series number 6), 1993.
- 13 Y M Nam, Derivatives of Blaschke products on extended H^p spaces, Osaka Univ./RRM 94-8, 1994
- 14. D J Newman and S. Shapiro, The Taylor Coefficients of inner functions, Mich. Math J 9 (1962), 245-255
- D.Protas, Blaschke products with derivative in H^p and B^p, Michi Math. J 20 (1973), 393-396
- 16. W Rudin, The radial variation of analytic function, Duke Math J. 22 (1955), 235-242.
- 17. M Tsuji, Potential theory in modern function theory, Chelsea Pub. Co., NY, 1959.
- 18. S A. Vinogradov, V. P. Khavin, Free interpolation in H^{∞} and in Certain other classes of functions, J. Sovi. Math 9 (1978), 278-295.
- 19. A. Zygmund, Trigonometric series, Vol I, Vol II, Warsaw, 1935.

Department of Mathematics Education Kyungnam University Masan 631-701