ON COMPACT SASAKIAN MANIFOLDS
 WITH VANISHING CONSTANT C-BOCHNER CURVATURE TENSOR

Jong Joo Kim

1. Introduction

In a Sasakian manifold, many subjects for vanishing C-Bochner curvature tensor have been studied in [2]~[7], [9] and so on. Two of those, done by Hasegawa and Nakane [6] and Choi and Ki [3], assert the followings:

Theorem H-N. Let M be a n-dimensional Sasakian manifold with constant scalar curvature whose C-Bochner curvature tensor vanishes. If the square of the length $T_{(2)}$ of the ξ-Einstein tensor satisfies

$$
T_{(2)} \leq \frac{(n-3)(n+3)^{2}}{2(n-1)(n+1)^{2}(n-5)^{2}}(R+n-1)^{2}, \quad n \geq 7
$$

then M is a space of constant ϕ-holomorphic sectional curvature, and the equality is the best possible.

Theorem C-K. Let M be an $n(\geq 5)$-dimensional Sasakian manifold with constant scalar curvature whose C-Bochner curvature tensor vanishes. Then M is a space of constant ϕ-holomorphic sectional curvature $\frac{4 R-(n-1)(3 n-1)}{\left(n^{2}-1\right)}$ or M admits a cyclic parallel almost product structure which is not integrable.

The purposes of this paper are to prove the following two theorems.
Received August 11, 1995.
This work was supported by a grant of the Basic Science Research Institute, Dong-A University, 1994.

Theorem 1. Let M be an $n(\geq 5)$-dimensional compact Sasakian manifold with vanishing C-Bochner curvature tensor. If the length of the η-Einstein tensor $\left\|T_{(2)}\right\|$ satisfies

$$
\begin{equation*}
\left\|T_{(2)}\right\| \leq \frac{\sqrt{n(n-1)}(n+3)}{\left(n^{2}-1\right)(n-2)}(1-n-R), \tag{*}
\end{equation*}
$$

then we have the same conclusion as that of Theorem C-K.
Theorem 2. Let M be an $n(\geq 7)$-dimensional Sasakian manifold with vanishing C-Bochner curvature tensor. If it satisfies

$$
\begin{equation*}
T_{(2)}=a(R+n-1)^{2} \tag{**}
\end{equation*}
$$

for some constant a, then we have the same conclusion as that of Theorem C-K.

2. Preliminaries

Let M be an $n(>3)$-dimensional Sasakian manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, where here and in the sequel the indices h, i, j, \cdots run over the range $\{1,2, \cdots, n\}$ (The summation convention will be used with respect to these indices). If we denote by ∇ the operator of covariant differentiation with respect to the Riemannian connection of M, then there exists a unit Killing vector ξ^{h} satisfying

$$
\left\{\begin{array}{l}
\phi_{j}{ }^{r} \phi_{r}{ }^{h}=-\delta_{j}{ }^{h}+\eta_{j} \xi^{h}, \quad \eta_{j}=g_{j} \xi^{r}, \quad \eta_{r} \phi_{j}^{r}=0 \tag{2.1}\\
\phi_{r}{ }^{h} \xi^{r}=0, \quad g_{r s} \phi_{j}^{r} \phi_{2}{ }^{s}=g_{j i}-\eta_{j} \eta_{2}, \quad \phi_{j 2}+\phi_{i j}=0
\end{array}\right.
$$

Because of the Ricci formula for ξ^{i}, it is clear that

$$
\begin{equation*}
R_{k j 2}{ }^{r} \eta_{\tau}=\eta_{k} g_{j t}-\eta_{j} g_{k i} \tag{2.3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
R_{j r} \xi^{r}=(n-1) \eta_{3} \tag{2.4}
\end{equation*}
$$

where $R_{k j t h}$ and $R_{\jmath^{2}}$ denote the components of the Riemannian curvature tensor K and of the Ricci tensor Ric respectively.

It is well known that in a Sasakian manifold the following equations hold:

$$
\begin{align*}
& \nabla_{\lambda} R_{32}-\left(\nabla_{k} R_{r s}\right) \phi_{3}^{r} \phi_{t}^{s} \\
& =-\left\{H_{k_{3}}-(n-1) \phi_{k_{3}}\right\} \eta_{t}-\left\{H_{k_{2}}-(n-1) \phi_{k_{2}}\right\} \eta_{3} \tag{2.8}
\end{align*}
$$

$$
\begin{equation*}
\xi^{r} \nabla_{\mathbf{r}} R_{k j t}{ }^{h}=0, \tag{2.9}
\end{equation*}
$$

where we put $H_{j^{2}}=\phi_{j}{ }^{r} R_{r i}$.
We denote a tensor field $W^{(m)}$ with components $W_{\mu}^{(m)}$ and a function $W_{(m)}$ for any positive integer m as follows:

$$
\begin{align*}
& W_{\jmath t}^{(m)}=W_{y_{1}} W_{t_{2}}^{\imath_{1}} \cdots W_{2}^{t_{m-1}} \\
& W_{(m)}=\operatorname{Tr} W^{(m)}=\sum_{1} W_{t i}^{(m)} \tag{2.10}
\end{align*}
$$

Also, we define the η-Einstein tensor $T_{\mu 2}$ by

$$
\begin{equation*}
T_{y_{2}}=R_{3^{2}}-\left(\frac{R}{n-1}-1\right) g_{j^{2}}+\left(\frac{R}{n-1}-n\right) \eta_{3} \eta_{2} \tag{2.11}
\end{equation*}
$$

If the η-Einstein tensor T vanishes, then M is called an η-Einstein manifold. From (2.4) and (2.5), we have

$$
\begin{equation*}
\operatorname{Tr} T=T_{r}^{r}=0 \tag{2.12}
\end{equation*}
$$

$$
\begin{gather*}
T_{j r} \xi^{r}=0 \tag{2.13}\\
T_{j r}^{(m)} \phi_{i}^{r}+T_{i r}^{(m)} \phi_{j}^{r}=0 \tag{2.14}
\end{gather*}
$$

for any integer m.
A Sasakian manifold M is called a space of constant ϕ-holomorphic sectional curvature c if the curvature tensor of M has the form:

$$
\begin{aligned}
R_{k j i}^{h} & =\frac{c+3}{4}\left(g_{j i} \delta_{k}^{h}-g_{k i} \delta_{j}^{h}\right)+\frac{c-1}{4}\left(g_{k i} \eta_{j} \xi^{h}-g_{j i} \eta_{k} \xi^{h}+\eta_{k} \eta_{t} \delta_{j}^{h}\right. \\
& \left.-\eta_{j} \eta_{t} \delta_{k}^{h}-\phi_{k i} \phi_{j}^{h}+\phi_{j i} \phi_{k}^{h}-2 \phi_{k,} \phi_{i}^{h}\right)
\end{aligned}
$$

Matsumoto and Chūman ([8]) introduced the C-Bochner curvature tensor $B_{k j t}{ }^{h}$ defined by

$$
\begin{align*}
& B_{k j z}^{h}=R_{k y z}^{h}+\frac{1}{n+3}\left(R_{k i} \delta_{j}^{h}-R_{j z} \delta_{k}^{h}+g_{k i} R_{j}^{h}\right. \\
& -g_{j 2} R_{k}^{h}+H_{k z} \phi_{j}^{h}-H_{j z} \phi_{k}^{h}+\phi_{k i} H_{j}^{h}-\phi_{3 z} H_{k}^{h}+2 H_{k j} \phi_{z}^{h} \\
& \left.+2 \phi_{k j} H_{z}^{h}-R_{k z} \eta_{j} \xi^{h}+R_{y i} \eta_{k} \xi^{h}-\eta_{k} \eta_{2} R_{j}^{h}+\eta_{j} \eta_{z} R_{k}^{h}\right) \\
& -\frac{k+n-1}{n+3}\left(\phi_{k i} \phi_{j}^{h}-\phi_{j 2} \phi_{k}^{h}+2 \phi_{k j} \phi_{t}^{h}\right) \tag{2.15}\\
& -\frac{k-4}{n+3}\left(g_{k z} \delta_{j}^{h}-g_{j i} \delta_{k}^{h}\right) \\
& +\frac{k}{n+3}\left(g_{k i} \eta_{j} \xi^{h}-g_{j z} \eta_{k} \xi^{h}+\eta_{k} \eta_{i} \delta_{j}^{h}-\eta_{j} \eta_{t} \delta_{k}^{h}\right)
\end{align*}
$$

where $k=\frac{R+n-1}{n+1}$. It is well-known that if a Sasakian manifold with vanishing C-Bochner curvature tensor is an η-Einstein manifold, then it is a space of constant ϕ-holomorphic sectional curvature.

By a straightforward computation, we can prove

$$
\begin{align*}
& \frac{n+3}{n-1} \nabla_{r} B_{k j i}^{r}=\nabla_{k} R_{j i}-\nabla_{j} R_{k t}-\eta_{k}\left\{H_{j 2}-(n-1) \phi_{j i}\right\} \\
& +\eta_{j}\left\{H_{k i}-(n-1) \phi_{k t}\right\}+2 \eta_{i}\left\{H_{k j}-(n-1) \phi_{k j}\right\} \tag{2.16}\\
& +\frac{1}{2(n+1)}\left\{\left(g_{k i}-\eta_{k} \eta_{t}\right) \delta_{j}^{r}-\left(g_{j z}-\eta_{j} \eta_{i}\right) \delta_{k}^{r}\right. \\
& \left.+\phi_{k i} \phi_{j}^{r}-\phi_{j ı} \phi_{k}^{r}+2 \phi_{k_{j}} \phi_{t}^{r}\right\} R_{r},
\end{align*}
$$

where we put $R_{j}=\nabla_{j} R$.

3. Vanishing C-Bochner Curvature Tensor

Let M be an $n(\geq 5)$-dimensional Sasakian manifold with vanishing C-Bochner curvature tensor. By (2.1), (2.4), (2.7)~(2.9) and (2.16), we then obtain

$$
\begin{align*}
\nabla_{k} R_{\jmath \imath}= & \left\{R_{k r}-(n-1) g_{k r}\right\}\left(\phi_{j}{ }^{\Gamma} \eta_{t}+\phi_{\imath}{ }^{r} \eta_{j}\right) \\
& +\frac{1}{2(n+1)}\left\{2 R_{k}\left(g_{\jmath \imath}-\eta_{3} \eta_{\imath}\right)+R_{\jmath}\left(g_{k_{\imath}}-\eta_{k} \eta_{\imath}\right)\right. \tag{3.1}\\
& \left.+R_{2}\left(g_{k}-\eta_{k} \eta_{j}\right)-\phi_{k_{3}} w_{2}-\phi_{k z} w_{j}\right\},
\end{align*}
$$

where we put $w_{j}=\phi_{j r} R^{r}$.
Operating $g^{j l} \nabla_{l}$ to (3.1) and taking account of (2.1), (2.2), (2.5) and (3.1), we have

$$
\begin{align*}
& g^{\jmath l} \nabla_{l} \nabla_{k} R_{y_{2}}=R_{k z}-(n-1) g_{k z}-\{R-n+1\} \eta_{k} \eta_{i} \\
& +(n-1)^{2} \eta_{k} \eta_{t}-\frac{1}{2} w_{k} \eta_{3}+\frac{1}{2(n+1)}\left\{3\left(\nabla_{k} R_{t}+w_{k} \eta_{i}\right)\right. \tag{3.2}\\
& \left.+\Delta R\left(g_{k 1}-\eta_{k} \eta_{2}\right)-(n-2) w_{i} \eta_{k}-\left(\nabla_{r} R_{s}\right) \phi_{k}^{r} \phi_{2}^{s}\right\}
\end{align*}
$$

where $\Delta R=g^{33} \nabla_{j} R_{2}$.
On the other hand we have the Ricci identity for R_{y}

$$
\nabla^{l} \nabla_{j} R_{l_{t}}-\frac{1}{2} \nabla, R_{t}=R_{j t}^{(2)}-R_{k j i h} R^{k h}
$$

Thus, (3.2) is reduced to

$$
\begin{align*}
& (n+3) R_{j 2}^{(2)}-(n+3) R_{k j l h} R^{k h} \\
& =(n+3) R_{j 1}-(n+3)(n-1) g_{j i} \\
& -(n+3)\{R-n(n-1)\} \eta_{j} \eta_{i} \\
& +\frac{n+3}{2(n+1)}\left\{\Delta R\left(g_{j i}-\eta_{j} \eta_{i}\right)+\nabla_{r} R_{s} \phi_{j}{ }^{r} \phi_{i}^{s}\right\} \tag{3.3}\\
& -\frac{(n+3)(n-2)}{2(n+1)}\left(\nabla_{j} R_{i}+w_{j} \eta_{i}+w_{i} \eta_{j}\right)
\end{align*}
$$

Using (2.15), we obtain (see [7])

$$
\begin{aligned}
& (n+3) R_{k j z h} R^{k h} \\
& =4 R_{j 2}^{(2)}-(4 n-R+2 k) R_{j 2}+\left\{R_{(2\}}-(k-4) R+(n-1) k\right\} g_{\jmath ะ} \\
& \quad-\left\{R_{(2)}+(n-1)^{2}-(n-1) k-k R\right\} \eta_{3} \eta_{i} .
\end{aligned}
$$

Combining this with (3.3), we have

$$
\begin{gather*}
R_{j 2}^{(2)}-\beta R_{j \mathrm{t}}-\gamma g_{j i}-\left\{(n-1)^{2}-(n-1) \beta-\gamma\right\} \eta_{j} \eta_{t} \\
=\frac{n+3}{2\left(n^{2}-1\right)}\left\{\Delta R\left(g_{j i}-\eta_{j} \eta_{t}\right)-\nabla_{r} R_{s} \phi_{j}{ }^{r} \phi_{z}{ }^{s}\right\} \tag{3.4}\\
- \\
-\frac{(n+3)(n-2)}{2\left(n^{2}-1\right)}\left(\nabla, R_{i}+w_{\jmath} \eta_{t}+w_{i} \eta_{j}\right),
\end{gather*}
$$

where we have defined

$$
\begin{gathered}
(n+1) \beta=R-3 n-5, \\
(n-1) \gamma=R_{(2)}-\frac{1}{n+1} R^{2}+4 R-\frac{n-1}{n+1}\left(n^{2}+3 n+4\right)
\end{gathered}
$$

Transforming (2.11) by $R_{k}{ }^{t}$ and taking account of (2.4) and (3.4), we can get

$$
\begin{aligned}
& T_{3 r} R_{k}^{r}=\left(\beta+1-\frac{R}{n-1}\right) R_{j k}+\gamma g_{j k} \\
& +\{R-n+1-(n-1) \beta-\gamma\} \eta_{j} \eta_{k} \\
& +\frac{(n+3)}{2\left(n^{2}-1\right)}\left\{\Delta R\left(g_{j k}-\eta_{j} \eta_{k}\right)-\nabla_{r} R_{s} \phi_{j}^{r} \phi_{k}^{s}\right\} \\
& -\frac{(n+3)(n-2)}{2\left(n^{2}-1\right)}\left(\nabla_{j} R_{k}+w_{j} \eta_{k}+w_{k} \eta_{j}\right),
\end{aligned}
$$

which together with (2.11) and (2.13) yields

$$
\begin{align*}
& T_{j 2}^{(2)}=-\frac{n+3}{n^{2}-1}(R+n-1) T_{j i}+\frac{T_{(2)}}{n-1}\left(g_{j i}-\eta_{j} \eta_{2}\right) \\
& +\frac{n+3}{2\left(n^{2}-1\right)}\left\{\Delta R\left(g_{j i}-\eta_{j} \eta_{i}\right)+\nabla_{r} R_{s} \phi_{j}{ }^{r} \phi_{i}^{s}\right\} \tag{3.5}\\
& -\frac{(n+3)(n-2)}{2\left(n^{2}-1\right)}\left(\nabla_{j} R_{i}+w_{j} \eta_{i}+w_{2} \eta_{j}\right)
\end{align*}
$$

By using (2.14), we can easily, taking account of (3.5), see that

$$
\phi_{j r} \nabla_{\mathrm{t}} R^{r}+\phi_{2 r} \nabla_{3} R^{r}=R_{3} \eta_{\mathrm{t}}+R_{i} \eta_{j}
$$

which implies

$$
\nabla_{r} R_{s} \phi_{j}^{r} \phi_{i}^{s}=\nabla_{J} R_{2}+w_{j} \eta_{z}+w_{2} \eta_{j}
$$

Thus, (3.5) turns out to be

$$
\begin{align*}
& T_{j 2}^{(2)}=-\frac{n+3}{n^{2}-1}(R+n-1) T_{\jmath 1}+\left(\frac{1}{n-1} T_{(2)}\right. \\
& \left.+\frac{n+3}{2\left(n^{2}-1\right)} \Delta R\right)\left(g_{\jmath t}-\eta_{j} \eta_{t}\right)-\frac{n+3}{2(n+1)}\left(\nabla_{j} R_{i}+w_{\jmath} \eta_{t}+w_{2} \eta_{\jmath}\right) \tag{3.6}
\end{align*}
$$

Accordingly, we see, using (2.12) and (2.13), that

$$
T_{(3)}+\frac{n+3}{n^{2}-1}(R+n-1) T_{(2)}+\frac{n+3}{2(n+1)} \nabla, R_{i} T^{j 1}=0
$$

By the way, using (2.11) and the fact that $\nabla_{3} R_{i}{ }^{3}=\frac{1}{2} R_{1}$, we have

$$
\nabla^{\jmath}\left(T_{y \pm} R^{\prime}\right)=\frac{n-3}{2(n-1)}\left\|R_{2}\right\|^{2}+\nabla, R_{2} T^{\prime 2}
$$

Combining the last two equations, it follows that

$$
\begin{align*}
& \frac{n^{2}-1}{n+3} \nabla^{3}\left(T_{33} R^{i}\right) \tag{3.7}\\
& =\frac{n^{2}-1}{n+3} T_{(3)}+(R+n-1) T_{(2)}-\frac{n-3}{4}\left\|R_{2}\right\|^{2}
\end{align*}
$$

Proof of Theorem 1. Let c_{1}, \cdots, c_{m} and k be real numbers satisfying $\sum_{t=1}^{m} c_{i}=0$ and $\sum_{t=1}^{m} c_{t}^{2}=k^{2}$. Then we have [9]

$$
\begin{equation*}
-\frac{m-2}{\sqrt{m(m-1)}} k^{3} \leq \sum_{i=1}^{m} c_{i}^{3} \leq \frac{m-2}{\sqrt{m(m-1)}} k^{3} \tag{3.8}
\end{equation*}
$$

From (2.12) and (2.13) and commutativity of $R_{j}{ }^{h}$ and $\phi_{J}{ }^{h}$, we see that the eigenvalues of $R_{j}{ }^{h}$ are $c_{1}, \cdots, c_{n / 2}, c_{1}, \cdots, c_{n / 2}$ and 0 . Combining this fact with (3.8), we have

$$
\frac{n^{2}-1}{n+3} T_{(3)}+(R+n-1) T_{(2)} \leq T_{(2)}\left\{\frac{n-2}{\sqrt{n(n-1)}}\left\|T_{(2)}\right\|+R+n-1\right\} .
$$

Because of the condition ($*$), the right hand side of (3.7) is nonnegative. M being compact, using the Green's theorem, we see that R is constant. Owing to Theorem C-K, the conclusion of Theorem 1 is true. This completes the proof.

Proof of Theorem 2. Differentiating (2.11) covariantly, we find

$$
\begin{equation*}
\nabla_{k} T_{\jmath 1}=\nabla_{k} R_{j i}-\frac{1}{n-1} R_{k}\left(g_{j i}-\eta_{j} \eta_{z}\right) \tag{3.9}
\end{equation*}
$$

$$
+\left(\frac{R}{n-1}-n\right)\left(\phi_{k j} \eta_{t}+\phi_{k_{t}} \eta_{\jmath}\right)
$$

If we transvect $T^{3 r}$ to this and take account of (2.12), (2.13) and (3.1), then we obtain

$$
T^{\jmath r} \nabla_{k} T_{\jmath \imath}=\frac{2}{n-1} T_{k r} R^{r},
$$

which implies

$$
\nabla_{j} T_{(2)}=\frac{4}{n-1} T_{k r} R^{r}
$$

Because of the condition (**), it is seen that

$$
\begin{equation*}
T_{y r} R^{r}=\frac{n-1}{2} a(R+n-1) R . \tag{3.10}
\end{equation*}
$$

Differentiating (3.10) covariantly and making use of (3.9), we find

$$
\begin{aligned}
& \left(\nabla_{k} R_{j r}\right) R^{r}+\left(\frac{R}{n-1}-n\right) w_{k} \eta_{j} \\
& =\frac{1}{n-1} R_{3} R_{k}-T_{3 r} \nabla_{k} R^{r}+\frac{n-1}{2} a\left\{R, R_{k}+(R+n-1) \nabla_{k} R_{j}\right\},
\end{aligned}
$$

which together with (3.1) implies that

$$
\begin{aligned}
& -\left\{R_{k r} w^{r}-(n-1) w_{k}\right\} \eta_{j}+\left(\frac{R}{n-1}-n\right) w_{k} \eta_{j} \\
& \quad \quad+\frac{1}{2(n+1)}\left\{3 R_{j} R_{k}+\left\|R_{\imath}\right\|^{2}\left(g_{j k}-\eta_{j} \eta_{k}\right)-w_{j} w_{k}\right\} \\
& = \\
& \frac{1}{n-1} R, R_{k}-T_{3} \nabla_{k} R^{r}+\frac{n-1}{2} a\left\{R_{j} R_{k}+(R+n-1) \nabla_{k} R_{j}\right\} .
\end{aligned}
$$

By transvecting η^{3}, we obtain

$$
\begin{aligned}
& -\left\{R_{k r} w^{r}-(n-1) w_{k}\right\}+\left(\frac{R}{n-1}-n\right) w_{k} \\
& =-\frac{n-1}{2} a(R+n-1) w_{k}
\end{aligned}
$$

where we have used (2.1) and (2.9). From the last two equations it follows that

$$
\begin{aligned}
& \frac{1}{2(n+1)}\left\{3 R_{\jmath} R_{k}-w_{j} w_{k}+\left\|R_{\mathrm{i}}\right\|^{2}\left(g_{j k}-\eta_{j} \eta_{k}\right)\right\} \\
& -\frac{n-1}{2} a(R+n-1) w_{k} \eta_{j} \\
& =\frac{1}{n-1} R_{j} R_{k}-T_{\jmath} \nabla_{k} R^{r}+\frac{n-1}{2} a\left\{R_{j} R_{k}+(R+n-1) \nabla_{k} R_{j}\right\} .
\end{aligned}
$$

Transvecting this with R^{3} and making use of (3.10), we see that $R,=0$, namely R is constant. Therefore we arrive at the conclusion.

References

1. W.M. Boothby and H.C. Wang, On contact manifolds, Annals of Math. 68 (1958), 721-734.
2. E.-S. Choi, U-H. Ki and K. Takano, Sasakzan manifolds wath vanishing C Bochner curvature tensor, Acta Math. Hungarica 66 (1995), 327-336.
3. H.R. Chol and U-H. Kı, On Sasakian manifolds unth constant scalar curvature whose C-Bochner curvature tensor vanishes, Nihonkai Math. J. 5 (1994), 101-107.
4. G. Chūman, On a Sasakzan manıfold with C-Bochner curvature tensor, TRU Math. 5 (1969), 5-8.
5. K. Hasegawa and T. Nakane, On Sasakıan manifolds with vanzshing contact Bochner curvature tensor, Hokkaido Math. J. 9 (1980), 184-189.
6. K. Hasegawa and T Nakane, On Sasakıan manifolds with vanishing contact Bochner curvature tensor, Hokkaido Math. J. 11 (1982), 44-51.
7. U-H. Ki and H.S. Kim, Sasakian mantfolds whose C-Bochner curvature tensor vanzshes, Tensor N S. 49 (1990), 32-39.
8. M Matsumoto and G. Chūman, On the C-Bochner curvature tensor, TRU Math. 5 (1969), 21-30
9. M Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-212.
10. J. S. Pak, A note on Sasakian manzfolds with vanıshing C-Bochner curvature tensor, Kōdai Math. Sem. Rep. 28 (1976), 19-27.

Department of Mathematics
Dong-A University
Pusan 604-714, Korea

