# SOME HOMOMORPHISMS OF $\Gamma$-RINGS 

## Young In Kwon

Definition 1. ([2]) Let $M$ and $\Gamma$ be additive abelians groups. If we have two maps $M \times \Gamma \times M \rightarrow M$ and $\Gamma \times M \times \Gamma \rightarrow \Gamma$ such that for all $x, y, z \in M, \alpha, \beta, \gamma \in \Gamma$,
(1) $(x \alpha y) \beta z=x(\alpha y \beta) z=x \alpha(y \beta z)$ and $(\alpha x \beta) y \gamma=\alpha(x \beta y) \gamma=$ $\alpha x(\beta y \gamma)$,
(2) $(x+y) \alpha z=x \alpha z+y \alpha z, x(\alpha+\beta) z=x \alpha z+x \beta z, x \alpha(y+z)=$ $x \alpha y+x \alpha z,(\alpha+\beta) x \gamma=\alpha x \gamma+\beta x \gamma, \alpha(x+y) \gamma=\alpha x \gamma+\alpha y \gamma$ and $\alpha x(\beta+\gamma)=\alpha x \beta+\alpha x \gamma$.
then $M$ is called a weak $\Gamma$-ring in the sense of Nobusawa.

In this paper $M$ denotes a weak Nobusawa. $\Gamma$-ring. For the definitions of basic notions in $\Gamma$-rings, we refer to $[3,4]$.

Definition 2. ([3]) A pair of mappings $(\theta, \phi)$ from $\Gamma_{1}$-ring $M_{1}$ onto $\Gamma_{2}$-ring $M_{2}$ is called a homomorphism if it satisfies the following properties:
(1) $\theta$ and $\phi$ are group homomorphisms from $M_{1}$ onto $M_{2}$ and from $\Gamma_{1}$ onto $\Gamma_{2}$ respectively.
(2) $\theta(x \alpha y)=\theta(x) \phi(\alpha) \theta(y), \phi(\alpha x \beta)=\phi(\alpha) \theta(x) \phi(\beta)$ for all $x, y \in$ $M_{1}, \alpha, \beta \in \Gamma_{1}$.

If $\theta, \phi$ are both injective, then $(\theta, \phi)$ is said to be an isomorphism of $\Gamma_{1}$-ring $M_{1}$ onto $\Gamma_{2}$-ring $M_{2}$.

Theorem 3. Let $M_{1}$ be a $\Gamma_{1}$-ring and $A, B$ two abelian groups. Suppose that there exist two mappings $M_{1} \times A \rightarrow B,(x, u) \mapsto x u$ and $B \times \Gamma_{1} \rightarrow A,(v, \alpha) \mapsto v \alpha$ satisfying

$$
\begin{gathered}
x((y u) \alpha)=(x \alpha y) u,(x(v \beta)) \alpha=v(\alpha x \beta) \\
(x+y) u_{1}=x u_{1}+y u_{1}, x\left(u_{1}+u_{2}\right)=x u_{1}+x u_{2}
\end{gathered}
$$

Received August 11, 1995.

$$
v(\alpha+\beta)=v \alpha+v \beta
$$

and

$$
\left(v_{1}+v_{2}\right) \alpha=v_{1} \alpha+v_{2} \alpha
$$

for all $x, y \in M_{1}, \alpha, \beta \in \Gamma_{1}, u_{1}, u_{2} \in A$ and $v_{1}, v_{2} \in B$, and $x u=y u$ for $x, y \in M_{1}$ and for all $u \in A$ implies $x=y$, and $v \alpha=v \beta$ for $\alpha, \beta \in \Gamma_{1}$ and for all $v \in B$ implies $\alpha=\beta$. Then there exists a $\Gamma_{2}$-ring $M_{2}$ such that $\Gamma_{1}$-ring $M_{1}$ is isomorphic to $\Gamma_{2}$-ring $M_{2}$, where each element of $M_{2}$ is a mapping from $A$ to $B$ and each element of $\Gamma_{2}$ is a mapping from $B$ to $A$.

Proof. Let $x \in M_{1}$ and $\alpha \in \Gamma_{1}$. Define

$$
l_{x}: A \rightarrow B
$$

by

$$
l_{x}(u)=x u
$$

for all $u \in A$ and define

$$
r_{\alpha}: B \rightarrow A
$$

by

$$
r_{\alpha}(v)=v \alpha
$$

for all $v \in B$. Let $M_{2}=\left\{l_{x} \mid x \in M_{1}\right\}$ and $\Gamma_{2}=\left\{r_{\alpha} \mid \alpha \in \Gamma_{1}\right\}$. Then, since $A$ and $B$ are abelian groups, $M_{2}$ and $\Gamma_{2}$ are abelian groups under the pointwise addition. Define two mappings

$$
M_{2} \times \Gamma_{2} \times M_{2} \rightarrow M_{2}
$$

by

$$
\left(l_{x}, r_{\alpha}, l_{y}\right) \mapsto l_{x} \circ r_{\alpha} \circ l_{y}
$$

and

$$
\Gamma_{2} \times M_{2} \times \Gamma_{2} \rightarrow \Gamma_{2}
$$

by

$$
\left(r_{\alpha}, l_{x}, r_{\beta}\right) \mapsto r_{\alpha} \circ l_{x} \circ r_{\beta}
$$

the usual compositions of mappings. For any $u \in A$, we have that

$$
\begin{aligned}
\left(l_{x} \circ r_{\alpha} \circ l_{y}\right)(u) & =l_{x} \circ r_{\alpha}\left(l_{y}(u)\right) \\
& =l_{x}\left(r_{\alpha}\left(l_{y}(u)\right)\right) \\
& =x((y u) \alpha) \\
& =(x \alpha y) u \\
& =l_{x \alpha y}(u)
\end{aligned}
$$

Hence

$$
l_{x} \circ r_{\alpha} \circ l_{y}=l_{x \alpha y} \in M_{2}
$$

Next for any $v \in B$, we get the equality:

$$
\begin{aligned}
\left(r_{\alpha} \circ l_{x} \circ r_{\beta}\right)(v) & =r_{\alpha} \circ l_{x}\left(r_{\beta}(v)\right) \\
& =r_{\alpha}\left(l_{x}\left(r_{\beta}(v)\right)\right) \\
& =(x(v \beta)) \alpha \\
& =v(\alpha x \beta) \\
& =r_{\alpha x \beta}(v)
\end{aligned}
$$

Hence

$$
r_{\alpha} \circ l_{x} \circ r_{\beta}=r_{\alpha x \beta} \in \Gamma_{2}
$$

Let $l_{x}, l_{y}, l_{z} \in M_{2}$ and $r_{\alpha}, r_{\beta}, r_{\gamma} \in \Gamma_{2}$. Then we have

$$
\begin{aligned}
& \left(l_{x}+l_{y}\right) \circ r_{\alpha} \circ l_{z}=l_{x} \circ r_{\alpha} \circ l_{z}+l_{y} \circ r_{\alpha} \circ l_{z} \\
& l_{x} \circ\left(r_{\alpha}+r_{\beta}\right) \circ l_{y}=l_{x} \circ r_{\alpha} \circ l_{y}+l_{x} \circ r_{\beta} \circ l_{y} \\
& l_{x} \circ r_{\alpha} \circ\left(l_{y}+l_{z}\right)=l_{x} \circ r_{\alpha} \circ l_{y}+l_{x} \circ r_{\alpha} \circ l_{z} \\
& \left(r_{\alpha}+r_{\beta}\right) \circ l_{x} \circ r_{x}=r_{\alpha} \circ l_{x} \circ r_{\gamma}+r_{\beta} \circ l_{x} \circ r_{\gamma} \\
& r_{\alpha} \circ\left(l_{x}+l_{y}\right) \circ r_{\beta}=r_{\alpha} \circ l_{x} \circ r_{\beta}+r_{\alpha} \circ l_{y} \circ r_{\beta}
\end{aligned}
$$

and

$$
r_{\alpha} \circ l_{x} \circ\left(r_{\beta}+r_{\gamma}\right)=r_{\alpha} \circ l_{x} \circ r_{\beta}+r_{\alpha} \circ l_{x} \circ r_{\gamma}
$$

Clearly

$$
l_{x} \circ r_{\alpha} \circ\left(l_{y} \circ r_{\beta} \circ l_{z}\right)=l_{x} \circ\left(r_{\alpha} \circ l_{y} \circ r_{\beta}\right) \circ l_{z}=\left(l_{x} \circ r_{\alpha} \circ l_{y}\right) \circ r_{\beta} \circ l_{z}
$$

and

$$
\begin{aligned}
\left(r_{\alpha} \circ l_{x} \circ r_{\beta}\right) \circ l_{y} \circ r_{\gamma} & =r_{\alpha} \circ\left(l_{x} \circ r_{\beta} \circ l_{y}\right) \circ r_{\alpha} \\
& =r_{\alpha} \circ l_{x} \circ\left(r_{\beta} \circ l_{y} \circ r_{\gamma}\right)
\end{aligned}
$$

Hence $M_{2}$ is a $\Gamma_{2}$-ring. Now define $\theta: M_{1} \rightarrow M_{2}, \phi: \Gamma_{1} \rightarrow \Gamma_{2}$ by $\theta(x)=l_{x}$ and $\phi(\alpha)=r_{\alpha}$ for all $x \in M_{1}$ and all $\alpha \in \Gamma_{1}$ respectively. Then $\theta$ and $\phi$ are onto group homomorphisms. Indeed, for any $x, y \in$ $M_{1}$ and $u \in A$,

$$
\begin{aligned}
\theta(x+y)(u) & =l_{x+y}(u)=(x+y) u \\
& =x u+y u=l_{x}(u)+l_{y}(u) \\
& =\theta(x)(u)+\theta(y)(u) \\
& =(\theta(x)+\theta(y))(u)
\end{aligned}
$$

Thus we have

$$
\theta(x+y)=l_{x+y}=l_{x}+l_{y}=\theta(x)+\theta(y)
$$

Also, for any $\alpha, \beta \in \Gamma_{1}$ and $v \in B$,

$$
\begin{aligned}
\phi(\alpha+\beta)(v) & =r_{\alpha+\beta}(v) \\
& =v(\alpha+\beta) \\
& =v \alpha+v \beta \\
& =r_{\alpha}(v)+r_{\beta}(v) \\
& =\phi(\alpha)(v)+\phi(\beta)(v) \\
& =(\phi(\alpha)+\phi(\beta))(v)
\end{aligned}
$$

Thus we obtain

$$
\phi(\alpha+\beta)=\phi(\alpha)+\phi(\beta)
$$

Clearly $\theta$ and $\phi$ are onto. For all $x, y \in M_{1}$ and $\alpha, \beta \in \Gamma_{1}$,

$$
\theta(x \alpha y)=l_{x \alpha y}=l_{x} \circ r_{\alpha} \circ l_{y}=\theta(x) \phi(\alpha) \theta(y)
$$

and

$$
\phi(\alpha x \beta)=r_{\alpha x \beta}=r_{\alpha} \circ l_{x} \circ r_{\beta}=\phi(\alpha) \theta(x) \phi(\beta)
$$

Thus $(\theta, \phi)$ is a homomorphism from $\Gamma_{1}$-ring $M_{1}$ onto $\Gamma_{2}$-ring $M_{2}$. Suppose that $\theta(x)=\theta(y)$ for $x, y \in M_{1}$. Then $l_{x}=l_{y}$. Hence $l_{x}(u)=$ $l_{y}(u)$ for all $u \in A$. This implies that $x u=y u$ for all $u \in A$. By the given conditions, we have $x=y$. Hence $\theta$ is injective. And suppose that $\phi(\alpha)=\phi(\beta)$ for $\alpha, \beta \in \Gamma_{1}$. Then $r_{\alpha}=r_{\beta}$ and so $r_{\alpha}(v)=r_{\beta}(v)$ for all $v \in B$. This implies that $v \alpha=v \beta$ for all $v \in B$. By the hypothesis, $\alpha=\beta$ and hence $\phi$ is injective. Thus $(\theta, \phi)$ is an isomorphism from $\Gamma_{1}$-ring $M_{1}$ onto $\Gamma_{2}$-ring $M_{2}$. Therefore the $\Gamma_{1}$-ring $M_{1}$ is isomorphic to the $\Gamma_{2}$-ring $M_{2}$.

Theorem 4. Let $A$ and $B$ be two abelians groups. Then we can make a $\Gamma$-ring $M$ with the following propertues:
(1) There exist two mappings $M \times A \rightarrow B,(x, u) \mapsto x u$ and $B \times \Gamma \rightarrow A,(v, \alpha) \mapsto v \alpha$ such that $x((y u) \alpha)=(x \alpha y) u$ and $(x(v \beta)) \alpha=v(\alpha x \beta)$ for $x, y \in M, \alpha, \beta \in \Gamma$ and $u \in A, v \in B$.
(2) $x u=y u$ for $x, y \in M$ and for all $u \in A$ ımplues $x=y$ and $v \alpha=v \beta$ for $\alpha, \beta \in \Gamma$ and for all $v \in B$ implies $\alpha=\beta$.

Proof. Let $M$ be the set of all homomorphisms from $A$ to $B$ and $\Gamma$ the set of all homomorphisms from $B$ to $A$. Then $M$ and $\Gamma$ are abelian groups. Define two maps $M \times \Gamma \times M \rightarrow M,(f, \alpha, g) \mapsto f \circ \alpha \circ g$ and $\Gamma \times M \times \Gamma \rightarrow \Gamma,(\alpha, f, \beta) \mapsto \alpha \circ f \circ \beta$ the usual composition of mappings. Let $f, g, h \in M$ and $\alpha, \beta, \gamma \in \Gamma$. For any $u \in A$,

$$
(f \circ \alpha \circ g)(u)=f(\alpha(g(u))) \in B
$$

since $g(u) \in B$ and $\alpha(g(u)) \in A$. Thus $f \circ \alpha \circ g \in M$. Moreover,

$$
(f \circ \alpha \circ g) \circ \beta \circ h=f \circ(\alpha \circ g \circ \beta) \circ h=f \circ \alpha \circ(g \circ \beta \circ h) .
$$

Since $f, g, h, \alpha, \beta$ and $\gamma$ are homomorphisms, we have
$(f+g) \circ \alpha \circ h=f \circ \alpha \circ h+g \circ \alpha \circ h, f \circ(\alpha+\beta) \circ h=f \circ \alpha \circ h+f \circ \beta \circ h$
$f \circ \alpha \circ(g+h)=f \circ \alpha \circ g+f \circ \alpha \circ h,(\alpha+\beta) \circ f \circ \gamma=\alpha \circ f \circ \gamma+\beta \circ f \circ \gamma$,
and
$\alpha \circ(f+g) \circ \gamma=\alpha \circ f \circ \gamma+\alpha \circ g \circ \gamma, \alpha \circ f \circ(\beta+\gamma)=\alpha \circ f \circ \beta+\alpha \circ f \circ \gamma$.
Define two mappings $M \times A \rightarrow B$ by $(f, u) \rightarrow f(u)$ and $B \times \square^{\circ} \rightarrow$ $A,(v, \alpha) \mapsto \alpha(v)$ for all $f \in M, \alpha \in \Gamma$ and $u \in A, v \in B$.

Now

$$
\begin{aligned}
& g((f u) \alpha)=g(f(u) \alpha)=g(\alpha(f(u)))=(g \alpha f)(u) \\
& (f(v \beta)) \alpha=(f(\beta(v))) \alpha=\alpha(f(\beta(v)))=v(\alpha f \beta)
\end{aligned}
$$

for $f, g \in M, \alpha, \beta \in \Gamma$ and $u \in A, v \in B$. Hence the conditior: (1) is satisfied. Let $f u=g u$ for $f, g \in M$ and for all $u \in A$. Then we have $f(u)=g(u)$ for all $u \in A$ and so $f=g$. Also $v \alpha=v \beta$ for $\alpha, \beta \in \mathrm{I}$ and for all $v \in B$ implies $\alpha=\beta$. Thus the condition (2) is satisfied.

## References

1. W.E.Barnes, On the $\Gamma$-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.

2 N.J.Groenewald and W.A.Olivier, *-Regularties of C -rings, , communication in algebra 21 (1993), 1681-1703.
3. S.Kyuno, On the radicals of Г-rings,, Osaka J.Math. 12 (1975), 639-645.

4 S.Kyuno, 「-rings with the reght and left untzes,, Math.Japonica 24 (1979), 191-193.
5 N.Nobusawa, On a generalization of the rang theory ,, Osaka J.Math 1 (1964), 81-89.
6. M.K.Sen and N.K.Saba, On Г-semigroup $I$, Bull. Cal.Math.Soc. 78 (1986), 180-186.
*Department of Mathematics Gyeongsang National University
Chinju 660-701, Korea.

