Pusan Kyŏngnam Math. J. 11(1995), No. 2, pp. 137-142

SOME HOMOMORPHISMS OF **F**-RINGS

YOUNG IN KWON

DEFINITION 1. ([2]) Let M and Γ be additive abelians groups. If we have two maps $M \times \Gamma \times M \to M$ and $\Gamma \times M \times \Gamma \to \Gamma$ such that for all $x, y, z \in M$, $\alpha, \beta, \gamma \in \Gamma$,

- (1) $(x\alpha y)\beta z = x(\alpha y\beta)z = x\alpha(y\beta z)$ and $(\alpha x\beta)y\gamma = \alpha(x\beta y)\gamma = \alpha x(\beta y\gamma)$,
- (2) $(x+y)\alpha z = x\alpha z + y\alpha z, x(\alpha + \beta)z = x\alpha z + x\beta z, x\alpha(y+z) = x\alpha y + x\alpha z, (\alpha + \beta)x\gamma = \alpha x\gamma + \beta x\gamma, \alpha(x+y)\gamma = \alpha x\gamma + \alpha y\gamma$ and $\alpha x(\beta + \gamma) = \alpha x\beta + \alpha x\gamma$.

then M is called a weak Γ -ring in the sense of Nobusawa.

In this paper M denotes a weak Nobusawa Γ -ring. For the definitions of basic notions in Γ -rings, we refer to [3,4].

DEFINITION 2. ([3]) A pair of mappings (θ, ϕ) from Γ_1 -ring M_1 onto Γ_2 -ring M_2 is called a homomorphism if it satisfies the following properties:

- (1) θ and ϕ are group homomorphisms from M_1 onto M_2 and from Γ_1 onto Γ_2 respectively.
- (2) $\theta(x\alpha y) = \theta(x)\phi(\alpha)\theta(y), \ \phi(\alpha x\beta) = \phi(\alpha)\theta(x)\phi(\beta)$ for all $x, y \in M_1, \alpha, \beta \in \Gamma_1$.

If θ, ϕ are both injective, then (θ, ϕ) is said to be an isomorphism of Γ_1 -ring M_1 onto Γ_2 -ring M_2 .

THEOREM 3. Let M_1 be a Γ_1 -ring and A, B two abelian groups. Suppose that there exist two mappings $M_1 \times A \to B, (x, u) \mapsto xu$ and $B \times \Gamma_1 \to A, (v, \alpha) \mapsto v\alpha$ satisfying

$$x((yu)\alpha) = (x\alpha y)u, (x(v\beta))\alpha = v(\alpha x\beta),$$
$$(x+y)u_1 = xu_1 + yu_1, x(u_1+u_2) = xu_1 + xu_2,$$

Received August 11, 1995.

$$v(\alpha + \beta) = v\alpha + v\beta$$

and

$$(v_1+v_2)\alpha=v_1\alpha+v_2\alpha$$

for all $x, y \in M_1$, $\alpha, \beta \in \Gamma_1, u_1, u_2 \in A$ and $v_1, v_2 \in B$, and xu = yu for $x, y \in M_1$ and for all $u \in A$ implies x = y, and $v\alpha = v\beta$ for $\alpha, \beta \in \Gamma_1$ and for all $v \in B$ implies $\alpha = \beta$. Then there exists a Γ_2 -ring M_2 such that Γ_1 -ring M_1 is isomorphic to Γ_2 -ring M_2 , where each element of M_2 is a mapping from A to B and each element of Γ_2 is a mapping from B to A.

Proof. Let $x \in M_1$ and $\alpha \in \Gamma_1$. Define

$$l_x: A \to B$$

by

 $l_x(u) = xu$

for all $u \in A$ and define

 $r_{\alpha}: B \rightarrow A$

by

$$r_{\alpha}(v) = v\alpha$$

for all $v \in B$. Let $M_2 = \{l_x | x \in M_1\}$ and $\Gamma_2 = \{r_\alpha | \alpha \in \Gamma_1\}$. Then, since A and B are abelian groups, M_2 and Γ_2 are abelian groups under the pointwise addition. Define two mappings

$$M_2 \times \Gamma_2 \times M_2 \to M_2$$

by

$$(l_x, r_\alpha, l_y) \mapsto l_x \circ r_\alpha \circ l_y$$

and

$$\Gamma_2 \times M_2 \times \Gamma_2 \to \Gamma_2$$

by

$$(r_{\alpha}, l_x, r_{\beta}) \mapsto r_{\alpha} \circ l_x \circ r_{\beta}$$

138

the usual compositions of mappings. For any $u \in A$, we have that

$$(l_x \circ r_\alpha \circ l_y)(u) = l_x \circ r_\alpha(l_y(u))$$
$$= l_x(r_\alpha(l_y(u)))$$
$$= x((yu)\alpha)$$
$$= (x\alpha y)u$$
$$= l_{x\alpha y}(u).$$

Hence

$$l_x \circ r_\alpha \circ l_y = l_{x\alpha y} \in M_2.$$

Next for any $v \in B$, we get the equality:

$$(r_{\alpha} \circ l_{x} \circ r_{\beta})(v) = r_{\alpha} \circ l_{x}(r_{\beta}(v))$$
$$= r_{\alpha}(l_{x}(r_{\beta}(v)))$$
$$= (x(v\beta))\alpha$$
$$= v(\alpha x\beta)$$
$$= r_{\alpha x\beta}(v).$$

Hence

$$r_{lpha} \circ l_x \circ r_{eta} = r_{lpha x eta} \in \Gamma_2.$$

Let $l_x, l_y, l_z \in M_2$ and $r_{\alpha}, r_{\beta}, r_{\gamma} \in \Gamma_2$. Then we have

$$(l_{x} + l_{y}) \circ r_{\alpha} \circ l_{z} = l_{x} \circ r_{\alpha} \circ l_{z} + l_{y} \circ r_{\alpha} \circ l_{z},$$

$$l_{x} \circ (r_{\alpha} + r_{\beta}) \circ l_{y} = l_{x} \circ r_{\alpha} \circ l_{y} + l_{x} \circ r_{\beta} \circ l_{y},$$

$$l_{x} \circ r_{\alpha} \circ (l_{y} + l_{z}) = l_{x} \circ r_{\alpha} \circ l_{y} + l_{x} \circ r_{\alpha} \circ l_{z},$$

$$(r_{\alpha} + r_{\beta}) \circ l_{x} \circ r_{x} = r_{\alpha} \circ l_{x} \circ r_{\gamma} + r_{\beta} \circ l_{x} \circ r_{\gamma},$$

$$r_{\alpha} \circ (l_{x} + l_{y}) \circ r_{\beta} = r_{\alpha} \circ l_{x} \circ r_{\beta} + r_{\alpha} \circ l_{y} \circ r_{\beta}$$

 \mathbf{and}

$$r_{\alpha} \circ l_{x} \circ (r_{\beta} + r_{\gamma}) = r_{\alpha} \circ l_{x} \circ r_{\beta} + r_{\alpha} \circ l_{x} \circ r_{\gamma}.$$

Young In Kwon

Clearly

$$l_x \circ r_\alpha \circ (l_y \circ r_\beta \circ l_z) = l_x \circ (r_\alpha \circ l_y \circ r_\beta) \circ l_z = (l_x \circ r_\alpha \circ l_y) \circ r_\beta \circ l_z$$

 and

$$(r_{\alpha} \circ l_{x} \circ r_{\beta}) \circ l_{y} \circ r_{\gamma} = r_{\alpha} \circ (l_{x} \circ r_{\beta} \circ l_{y}) \circ r_{\alpha}$$
$$= r_{\alpha} \circ l_{x} \circ (r_{\beta} \circ l_{y} \circ r_{\gamma}).$$

Hence M_2 is a Γ_2 -ring. Now define $\theta : M_1 \to M_2, \phi : \Gamma_1 \to \Gamma_2$ by $\theta(x) = l_x$ and $\phi(\alpha) = r_\alpha$ for all $x \in M_1$ and all $\alpha \in \Gamma_1$ respectively. Then θ and ϕ are onto group homomorphisms. Indeed, for any $x, y \in M_1$ and $u \in A$,

$$\theta(x+y)(u) = l_{x+y}(u) = (x+y)u$$
$$= xu + yu = l_x(u) + l_y(u)$$
$$= \theta(x)(u) + \theta(y)(u)$$
$$= (\theta(x) + \theta(y))(u).$$

Thus we have

$$\theta(x+y) = l_{x+y} = l_x + l_y = \theta(x) + \theta(y).$$

Also, for any $\alpha, \beta \in \Gamma_1$ and $v \in B$,

$$\phi(\alpha + \beta)(v) = r_{\alpha+\beta}(v)$$

= $v(\alpha + \beta)$
= $v\alpha + v\beta$
= $r_{\alpha}(v) + r_{\beta}(v)$
= $\phi(\alpha)(v) + \phi(\beta)(v)$
= $(\phi(\alpha) + \phi(\beta))(v)$.

Thus we obtain

$$\phi(\alpha + \beta) = \phi(\alpha) + \phi(\beta).$$

Clearly θ and ϕ are onto. For all $x, y \in M_1$ and $\alpha, \beta \in \Gamma_1$,

$$\theta(x\alpha y) = l_{x\alpha y} = l_x \circ r_\alpha \circ l_y = \theta(x)\phi(\alpha)\theta(y)$$

140

 and

$$\phi(\alpha x\beta) = r_{\alpha x\beta} = r_{\alpha} \circ l_x \circ r_{\beta} = \phi(\alpha)\theta(x)\phi(\beta).$$

Thus (θ, ϕ) is a homomorphism from Γ_1 -ring M_1 onto Γ_2 -ring M_2 . Suppose that $\theta(x) = \theta(y)$ for $x, y \in M_1$. Then $l_x = l_y$. Hence $l_x(u) = l_y(u)$ for all $u \in A$. This implies that xu = yu for all $u \in A$. By the given conditions, we have x = y. Hence θ is injective. And suppose that $\phi(\alpha) = \phi(\beta)$ for $\alpha, \beta \in \Gamma_1$. Then $r_\alpha = r_\beta$ and so $r_\alpha(v) = r_\beta(v)$ for all $v \in B$. This implies that $v\alpha = v\beta$ for all $v \in B$. By the hypothesis, $\alpha = \beta$ and hence ϕ is injective. Thus (θ, ϕ) is an isomorphism from Γ_1 -ring M_1 onto Γ_2 -ring M_2 .

THEOREM 4. Let A and B be two abelians groups. Then we can make a Γ -ring M with the following properties:

(1) There exist two mappings $M \times A \rightarrow B, (x, u) \mapsto xu$ and $B \times \Gamma \rightarrow A, (v, \alpha) \mapsto v\alpha$ such that $x((yu)\alpha) = (x\alpha y)u$ and $(x(v\beta))\alpha = v(\alpha x\beta)$ for $x, y \in M, \alpha, \beta \in \Gamma$ and $u \in A, v \in B$.

(2) xu = yu for $x, y \in M$ and for all $u \in A$ implies x = y and $v\alpha = v\beta$ for $\alpha, \beta \in \Gamma$ and for all $v \in B$ implies $\alpha = \beta$.

Proof. Let M be the set of all homomorphisms from A to B and Γ the set of all homomorphisms from B to A. Then M and Γ are abelian groups. Define two maps $M \times \Gamma \times M \to M$, $(f, \alpha, g) \mapsto f \circ \alpha \circ g$ and $\Gamma \times M \times \Gamma \to \Gamma$, $(\alpha, f, \beta) \mapsto \alpha \circ f \circ \beta$ the usual composition of mappings. Let $f, g, h \in M$ and $\alpha, \beta, \gamma \in \Gamma$. For any $u \in A$,

$$(f \circ \alpha \circ g)(u) = f(\alpha(g(u))) \in B,$$

since $g(u) \in B$ and $\alpha(g(u)) \in A$. Thus $f \circ \alpha \circ g \in M$. Moreover,

$$(f \circ \alpha \circ g) \circ \beta \circ h = f \circ (\alpha \circ g \circ \beta) \circ h = f \circ \alpha \circ (g \circ \beta \circ h)$$

Since f, g, h, α, β and γ are homomorphisms, we have

$$(f+g) \circ \alpha \circ h = f \circ \alpha \circ h + g \circ \alpha \circ h, f \circ (\alpha + \beta) \circ h = f \circ \alpha \circ h + f \circ \beta \circ h$$

$$f \circ \alpha \circ (g + h) = f \circ \alpha \circ g + f \circ \alpha \circ h, (\alpha + \beta) \circ f \circ \gamma = \alpha \circ f \circ \gamma + \beta \circ f \circ \gamma,$$

and

$$\alpha \circ (f+g) \circ \gamma = \alpha \circ f \circ \gamma + \alpha \circ g \circ \gamma, \alpha \circ f \circ (\beta + \gamma) = \alpha \circ f \circ \beta + \alpha \circ f \circ \gamma.$$

Define two mappings $M \times A \to B$ by $(f, u) \mapsto f(u)$ and $B \times \Gamma \to A, (v, \alpha) \mapsto \alpha(v)$ for all $f \in M, \alpha \in \Gamma$ and $u \in A, v \in B$. Now

$$g((fu)\alpha) = g(f(u)\alpha) = g(\alpha(f(u))) = (g\alpha f)(u),$$
$$(f(v\beta))\alpha = (f(\beta(v)))\alpha = \alpha(f(\beta(v))) = v(\alpha f\beta).$$

for $f,g \in M, \alpha, \beta \in \Gamma$ and $u \in A, v \in B$. Hence the condition (1) is satisfied. Let fu = gu for $f,g \in M$ and for all $u \in A$. Then we have f(u) = g(u) for all $u \in A$ and so f = g. Also $v\alpha = v\beta$ for $\alpha, \beta \in \Gamma$ and for all $v \in B$ implies $\alpha = \beta$. Thus the condition (2) is satisfied.

References

- 1. W.E.Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
- 2 N.J.Groenewald and W.A.Olivier, *-Regularities of F-rings, communication in algebra 21 (1993), 1681-1703.
- 3. S.Kyuno, On the radicals of Γ-rings, Osaka J.Math. 12 (1975), 639-645.
- 4 S.Kyuno, Γ-rings with the right and left unities, Math.Japonica 24 (1979), 191-193.
- 5 N.Nobusawa, On a generalization of the ring theory, Osaka J.Math 1 (1964), 81-89.
- M.K.Sen and N.K.Saba, On Γ-semigroup I,, Bull. Cal.Math.Soc. 78 (1986), 180-186.

*Department of Mathematics Gyeongsang National University Chinju 660-701, Korea.

142