THE DECOMPOSITIONS OF Γ-NEAR-RINGS

Young In Kwon

In this paper, all near-rings considered will be right near-rings. We refer to Pilz [4] for all notations and conventions. Berman and Silverman [1] showed that any near-ring N can be written as the sum of the two subnear-rings $C(N)$ and $Z(N)$. Now we consider the decompositions of Γ-near-rings.

Definition 1. A Γ-near-ring is a triple $(M,+, \Gamma)$, where
(1) $(M,+)$ ss a group,
(2) Γ is a nonempty set of binary operators such that $(M,+, \gamma)$ is a near-ring for each $\gamma \in \Gamma$,
(3) $x \gamma(y \mu z)=(x \gamma y) \mu z$ for all $x, y, z \in M, \gamma, \mu \in \Gamma$.

Let M be a Γ-near-ring. If a subgroup A of $(M,+)$ is a subnearring of ($M,+, \gamma$) for each $\gamma \in \Gamma$, then we say A is a sub- Γ-near-ring of M. A normal subgroup A of $(M,+)$ such that $x \gamma(a+y)-x \gamma y \in A$ and $a \gamma x \in A$ for all $a \in A, x, y \in M$ and $\gamma \in \Gamma$, is called an ideal of M. The zerosymmetric part of M, M_{0} is the set $\{x \in M: x \gamma 0=$ 0 for all $\gamma \in \Gamma\}$. The constant part of M, M_{c} is the set $\{x \in$ $M: x \gamma 0=x \quad$ for all $\gamma \in \Gamma\}$. We note that if $x \gamma 0=x$ for some $\gamma \in \Gamma$, and $\mu \in \Gamma$, then $x \mu 0=(x \gamma 0) \mu 0=x \gamma(0 \mu 0)=x \gamma 0=x$. Hence, $x \in M_{c}$ if and only if there exists $\gamma \in \Gamma$ such that $x \gamma 0=x . M$ is said to be zerosymmetric if $M=M_{0}$. Throughout this paper, M denotes a zerosymmetric Γ-near-ring. An idempotent is an element $x \in M$ such that $x \gamma x=x$ for all $\gamma \in \Gamma$.

Theorem 2. Let e be an idempotent in M. Then every element $x \in$ M can be expressed as two sums $x=x \gamma e+(-x \gamma e+x)=(x-x \gamma e)+x \gamma e$ for each $\gamma \in \Gamma$ and $M=A \oplus B=B \oplus A$, where $A=\{x \gamma e \mid x \in M\}$ and $B=\{x \in M \mid x \gamma e=0\}$.

Received August 11, 1995.

Proof. Clearly A and B are sub- Γ-near-rings of M. Also the elements $-x \gamma e+x$ and $x-x \gamma e$ are in B. suppose that $x=a_{1}+b_{1}=a_{2}+$ $b_{2}, a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. Then $-a_{2}+a_{1}=b_{2}-b_{1}$ must be in $A \cap B$. But the only element in $A \cap B$ is 0 . For if $a \in A \cap B$, then $a \gamma e=0$ and $a=x \gamma e$ for some $x \in M$. So we have $0=a \gamma e=(x \gamma e) \gamma e=$ $x \gamma(e \gamma e)=x \gamma e=a$. Thus $a_{1}=a_{2}$ and $b_{1}=b_{2}$. The uniqueness of the other representation is proved in the same way. Therefore we have $M=A \oplus B=B \oplus A$.

Since 0 is an idempotent in M, we have the following:
Corollary 3. For each $\gamma \in \Gamma$, we get that $M=M_{c}^{\gamma} \oplus M_{0}^{\gamma}$, where $M_{c}^{\gamma}=\{x \in M \mid x \gamma 0=x\}$ and $M_{0}^{\gamma}=\{x \in M \mid x \gamma 0=0\}$.

It is also easy to see that M_{0}^{γ} is a left ideal.
Definition 4. A Γ-near-ring M is transitive if for each $x_{1}, x_{2} \in$ $M_{c}^{\gamma}, x_{1} \neq 0$, there exists $y \in M_{0}^{\gamma}$ such that $y \gamma x_{1}=x_{2}$.

Theorem 5. Let M be a transitive Γ-near-ring. Then M_{0}^{γ} is a maximal sub-Г-near-ring of M for each $\gamma \in \Gamma$.

Proof. Let X be a sub-「-near-ring of M with $M_{0}^{\gamma} \varsubsetneqq X$. For $x \in$ $X, x \notin M_{0}^{\gamma}$, we have $x-x \gamma 0 \in M_{0}^{\gamma}$ and hence $x \gamma 0 \in X$. But $x \gamma 0 \in M_{c}^{\gamma}$ and $x \gamma 0 \neq 0$. Since M is transitive, $y \gamma(x \gamma 0)=0$ for some $y \in M_{0}^{\gamma}$ and hence $M_{c}^{\gamma} \subseteq X$. Thus $X=M$. Therefore M_{0}^{γ} is a maximal sub-Γ-near-ring of M.

From now on, we consider the transitive Γ-near-ring M.
Theorem 6. If X is a subgroup.of $(M,+), M_{0}^{\gamma} \subset X$, and $m_{1} \gamma\left(m_{2}+\right.$ $x)-m_{1} \gamma m_{2} \in X$ for $m_{1}, m_{2} \in M, x \in X$ then $M=X$. Hence M_{0}^{γ} is a maximal left ideal of M for each $\gamma \in \Gamma$.

Proof. Note that $M_{0}^{\gamma} \gamma X \subseteq X$ for each $\gamma \in \Gamma$. Applying the method used in the proof of the above Theorem 5, we have our results.

Let M be a Γ-near-ring and A a right ideal of M. Then $M_{0}^{\gamma} \gamma A \subseteq A$ for each $\gamma \in \Gamma$. We say M is simple if its only ideals are (0) and M.

Proposition 7. If A is an ideal of $M, M_{0}^{\gamma} \cap A \neq(0)$, and M_{0}^{γ} as a simple for each $\gamma \in \Gamma$, then $M_{0}^{\gamma} \subseteq A$.

Proof. Note that $M_{0}^{\gamma} \cap A$ is a nonzero left ideal of M_{0}^{γ}. Also ($M_{0} \cap A$) $\gamma M_{0}^{\gamma} \subseteq M_{0}^{\gamma} \cap A$. So $M_{0} \cap A$ is an ideal of M_{0}^{γ} and since M_{0}^{γ} is simple, we have $M_{0}^{\gamma} \cap A=M_{0}^{\gamma}$, hence $M_{0}^{\gamma} \subseteq A$.

Proposition 8. If A is an ideal of M and $A \cap M_{0}^{\gamma}=(0)$ for each $\gamma \in \Gamma$, then $A=M_{c}^{\gamma}$ or $A=(0)$.

Proof. Since A is a right ideal of M, for $x=c+z \in A \quad(c \in$ $M_{0}^{\gamma}, z \in M_{c}^{\gamma}$), we have $x \gamma 0=z \in A$ for $\gamma \in \Gamma$. So if $A \cap M_{0}^{\gamma}=(0)$, then $A \subset M_{c}^{\gamma}$. For each nonzero $a \in A$ and for any $z \in M_{c}^{\gamma}$, we can write $a \gamma c=z$ for some $c \in M_{0}^{\gamma}$. But $a \gamma c \in A$, so $M_{c}^{\gamma} \subset A$. Thus we have $A=M_{c}^{\gamma}$.

References

1. G.Berman and R.J.Silverman, Near-rings, Amer.Math.Monthly 66 (1959), 23-24.
2. G L.Booth and N.J.Groenewald, Equaprime Г-near-rings, Quaestiones Mathematicae 14 (1991), 411-417.
3. J D.P.Meldrum, Near-rungs and their links with groups, Research Notes in Mathematscs, Pitman,Boston 134 (1985)
4. G.Pilz, Near-rings, revtsed edztıon, North-Holland, Amsterdam (1983).

Department of Mathematics
Gyeongsang national University
Chinju 660-701,KOREA

