

JINKEE LEE AND HONG RAE CHO

1. Introduction

Let X be a complex manifold of dimension n. Let $\Omega \subseteq X$ be an open submanifold with smooth boundary. The $\overline{\partial}$ -Neumann problem is concerned with the existence and especially with the regularity of the solution u of $\overline{\partial} u = \alpha$, where u is orthogonal to the kernel of $\overline{\partial}$ and α is a $\overline{\partial}$ -closed (p,q)-form with L^2 -coefficients and it is cohomologous to zero on Ω . One of the main methods for proving regularity of the solution is the method of subelliptic estimates. The importance of subelliptic estimates lies in the fact that it yields a positive answer to the question of local regularity: If the form α is smooth in a neighborhood U of a given boundary point z_0 , is the solution u also smooth in U? However, for many applications, such as the boundary regularity of biholomorphic maps, it is sufficient to study the question of global regularity: If α is smooth on all of Ω , is the solution u also smooth on all of Ω ? It is not yet known whether the special solution, namely the one that is orthogonal to the kernel of $\overline{\partial}$, is smooth. However, Kohn and Nirenberg [5] found that the global regularity for the special solution does hold when a certain estimate, which we shall call a compactness estimate, still holds for the domain Ω . A compactness estimate is said to hold for the $\overline{\partial}$ -Neumann problem on Ω if for every $\varepsilon > 0$, there is a function $\zeta_{\epsilon} \in C^{\infty}_{o}(\Omega)$ such that

$$\|f\|^2 \leq \varepsilon Q(f,f) + \|\zeta_{\epsilon}f\|^2_{-1}, \qquad f \in \mathrm{Dom}(\overline{\partial}) \cap \mathrm{Dom}(\overline{\partial}^*).$$

Here Q(f, f) refers to the form $(\overline{\partial} f, \overline{\partial} f) + (\overline{\partial}^* f, \overline{\partial}^* f)$, and $\|\cdot\|_{-1}$ refers to the Sobolev norm of order -1 for forms on Ω .

And we shall require the following definition.

Received july 28, 1995.

DEFINITION. The boundary of Ω satisfies property (P) at $z \in b\Omega$ if for every positive number M there is a plurisubharmonic function $\lambda \in C^{\infty}(\overline{\Omega})$ with $0 \leq \lambda \leq 1$, such that

$$\sum_{j,k=1}^n \lambda_{jk}(z) t_j \overline{t_k} \ge M |t|^2,$$

where $\lambda_{jk}(z)$, $j, k = 1, \dots, n$, is defined by $\partial \overline{\partial} \lambda(z) = \sum_{j,k=1}^{n} \lambda_{jk}(z) \omega^{j} \wedge \overline{\omega}^{k}$ for an orthonormal basis $\omega^{1}, \dots, \omega^{n}$ of $\Lambda_{z}^{1,0}$. We say that the boundary of Ω satisfies property (P) if it satisfies property (P) at each boundary point of Ω .

Catlin [2] showed that a compactness estimate holds for the $\overline{\partial}$ -Neumann problem on a smoothly bounded pseudoconvex domain Ω in \mathbb{C}^n which satisfies property (P). In this paper, we shall show the following case of the complex manifold.

THEOREM. Let Ω be a smoothly bounded, pseudoconvex submanifold which is relatively compact in a complex manifold X. If $b\Omega$ satisfies property (P), then the compactness estimate holds for the $\overline{\partial}$ -Neumann problem on Ω .

We define

$$\mathcal{H}^{p,q} = \{ lpha \in \mathrm{Dom}(\overline{\partial}) \cap \mathrm{Dom}(\overline{\partial}^*) \; ; \; \overline{\partial} lpha = 0 \; \mathrm{and} \; \overline{\partial}^* lpha = 0 \}.$$

By the Kohn-Nirenberg theorem [5], we get the following corollary.

COROLLARY. Let m be a nonnegative integer and $H_m(\Omega)$ be a Sobolev space of order m with the norm $\|\cdot\|_m$. Under the hypotheses of Theorem, if α is a $\overline{\partial}$ -closed (p,q)-form, which is C^{∞} on $\overline{\Omega}$ and $\alpha \perp \mathcal{H}^{p,q}$, then the canonical solution u of $\overline{\partial} u = \alpha$ with $u \perp \operatorname{Ker}(\overline{\partial})$ satisfies $\|u\|_m^2 \leq C_m(\|\alpha\|_m^2 + \|u\|^2)$. Since $C^{\infty}(\overline{\Omega}) = \bigcap_{m=0}^{\infty} H_m(\Omega)$, it follows that if $\alpha \in C^{\infty}_{(p,q)}(\overline{\Omega})$, then $u \in C^{\infty}_{(p,q-1)}(\overline{\Omega})$.

2. L^2 -estimate for $\overline{\partial}$.

We shall use Hörmander's method of weighted estimates for $\overline{\partial}$. By the Gram-Schmidt process in a coordinate patch U, we can construct forms $\omega^1, \ldots, \omega^n$, which for all z are an orthonormal basis of $\Lambda_z^{1,0}(U)$. Furthermore we can choose $\omega^n = \sqrt{2} \ \partial \rho$ on $b\Omega$, where ρ is a boundarydefining function satisfying $|d\rho| = 1$ on $b\Omega$. Let $\varphi \in C^1(\overline{\Omega})$ be a real-valued function. Define

$$(f,f)_{\varphi} = \int_{\Omega} \langle f,f \rangle e^{-\varphi} dV, \quad f \in \Lambda^{p,q}(U),$$

where $\langle f, f \rangle = \sum_{I,J} |f_{I,J}|^2$ and $\Lambda^{p,q}(U)$ is the space of smooth (p,q)-forms with compact support in U and $||f||_{\varphi}^2 = (f,f)_{\varphi}$. If

$$f = \sum_{I,J} f_{I,J} \omega^I \wedge \overline{\omega}^J$$

where the sum is over strictly increasing multi-indices of length p and q, respectively, then

(2.1)
$$\overline{\partial}f = \sum_{I,J} \sum_{j=1}^{n} \frac{\partial f_{I,J}}{\partial \overline{w}^{j}} \overline{\omega}^{j} \wedge \omega^{I} \wedge \overline{\omega}^{J} + \cdots,$$

where $\frac{\partial}{\partial w^1}, \dots, \frac{\partial}{\partial w^n}$ are a basis of $T^{1,0}$ that is dual to $\omega^1, \dots, \omega^n$, and the dots indicate terms in which no $f_{I,J}$ is differentiated; they occur because $\overline{\partial} \omega^i$ and $\overline{\partial} \overline{\omega}^j$ need not be 0. Let $\mathcal{D}^{(p,q)}(U)$ be the space of (p,q)-forms f on U such that

(2.2)
$$f_{I,J} = 0$$
 on $b\Omega$ when $n \in J$.

Let $\overline{\partial}^*$ be the L^2 -adjoint of $\overline{\partial}$. For forms $f \in \mathcal{D}^{(p,q)}(U)$ we have

(2.3)
$$\overline{\partial}^* f = (-1)^{p-1} \sum_{I,K} \sum_{j=1}^n \frac{\partial f_{I,jK}}{\partial \omega^j} \omega^I \wedge \overline{\omega}^K + \cdots,$$

where the dots again indicate terms where no derivatives occur in f. If Af denotes the sum in (2.1), then we obtain

$$(2.4) \quad \|Af\|_{\varphi}^{2} = \sum_{I,J} \sum_{j=1}^{n} \left\| \frac{\partial f_{I,J}}{\partial \overline{\omega}^{j}} \right\|_{\varphi}^{2} - \sum_{I,K} \sum_{j,k=1}^{n} \left(\frac{\partial f_{I,jK}}{\partial \overline{\omega}^{k}}, \frac{\partial f_{I,kK}}{\partial \overline{\omega}^{j}} \right)_{\varphi}$$

Let Bf denote the sum in (2.3). With the notation

$$\delta^{\varphi}_{j}\omega := e^{\varphi} \frac{\partial}{\partial \omega^{j}} (e^{-\varphi}\omega),$$

we obtain that

$$(2.5) \quad Bf = (-1)^{p-1} \sum_{I,K} \sum_{j=1}^{n} \delta_{j}^{\varphi} f_{I,jK} \omega^{I} \wedge \overline{\omega}^{K} + (-1)^{p-1} \sum_{I,K} \sum_{j=1}^{n} \frac{\partial \varphi}{\partial \omega^{j}} f_{I,jK} \omega^{I} \wedge \overline{\omega}^{K}.$$

Since Af and Bf differ from $\overline{\partial}f$ and $\overline{\partial}^*f$ by terms of order zero in f, it follows from (2.4) and (2.5) that

$$\begin{split} &\sum_{I,K} \sum_{j,k=1}^{n} (\delta_{j}^{\varphi} f_{I,jK}, \delta_{k}^{\varphi} f_{I,kK})_{\varphi} - \left(\frac{\partial f_{I,jK}}{\partial \overline{\omega}^{k}}, \frac{\partial f_{I,kK}}{\partial \overline{\omega}^{j}} \right)_{\varphi} \\ &+ \sum_{I,J} \sum_{j=1}^{n} \left\| \frac{\partial f_{I,J}}{\partial \overline{\omega}^{j}} \right\|_{\varphi}^{2} \\ &\leq 4 \|\overline{\partial}^{*} f\|_{\varphi}^{2} + 2 \|\overline{\partial} f\|_{\varphi}^{2} + 2 \sum_{I,K} \left\| \sum_{j=1}^{n} \frac{\partial \varphi}{\partial \omega^{j}} f_{I,jK} \right\|_{\varphi}^{2} + C \|f\|_{\varphi}^{2}, \end{split}$$

where C is a constant independent of φ . Since the support of f intersects the boundary $b\Omega$, there can be certain boundary integrals. Those that involve the coefficients $f_{I,J}$ for J with $n \in J$ must vanish because of (2.2) or because $\frac{\partial}{\partial \omega^i}$, $i = 1, \dots, n-1$, is tangent to $b\Omega$. We obtain

$$(2.6) \quad \int_{U\cap\Omega} \sum_{I,K} \sum_{j,k=1}^{n} \varphi_{jk} f_{I,jK} \overline{f_{I,kK}} e^{-\varphi} dV + \frac{1}{2} \sum_{I,J} \sum_{j=1}^{n} \left\| \frac{\partial f_{I,J}}{\partial \overline{\omega}^{j}} \right\|_{\varphi}^{2} \\ + \int_{U\cap b\Omega} \sum_{I,K} \sum_{j,k=1}^{n-1} \rho_{jk} f_{I,jK} \overline{f_{I,kK}} e^{-\varphi} dS \\ \leq 4 \|\overline{\partial}^{*} f\|_{\varphi}^{2} + 2 \|\overline{\partial} f\|_{\varphi}^{2} + 2 \sum_{I,K} \left\| \sum_{j=1}^{n} \frac{\partial \varphi}{\partial \omega^{j}} f_{I,jK} \right\|_{\varphi}^{2} + C' \|f\|_{\varphi}^{2},$$

where C' is a constant independent of φ . Now suppose that $0 \leq \lambda \leq 1$ on $\overline{\Omega}$. Let $\chi(t)$ denote the function $\frac{1}{6}e^t$. Set $\varphi = \chi(\lambda)$. Then

$$\sum_{j,k=1}^{n} \varphi_{jk} t_j \bar{t}_k = \chi'(\lambda) \sum_{j,k=1}^{n} \lambda_{jk} t_j \bar{t}_k + \chi''(\lambda) \left| \sum_{j=1}^{n} \frac{\partial \lambda}{\partial \omega^j} t_j \right|^2.$$

Since $\chi''(t) \ge 2(\chi'(t))^2$, $\chi'(t) \ge \frac{1}{18}$, it follows from (2.6) that (2.7) $\frac{1}{18} \sum_{I,K} \sum_{j,k=1}^n \int_{U \cap \Omega} \lambda_{jk} f_{I,jK} \overline{f_{I,kK}} e^{-\varphi} dV \le 4 \|\overline{\partial}^* f\|_{\varphi}^2 + 2 \|\overline{\partial} f\|_{\varphi}^2 + C' \|f\|_{\varphi}^2.$

3. Proof of Theorem

Proof of Theorem. By continuity of the second derivatives of λ , there exists a neighborhood U (dependent on M) of z_0 such that

(3.1)
$$\sum_{j,k=1}^{n} \lambda_{jk}(z) t_j \overline{t_k} \ge M |t|^2 \quad , z \in U \cap \overline{\Omega}.$$

Since $\frac{1}{2} \leq e^{-\varphi} \leq 1$, it follows from (2.7) that

$$\frac{M}{36}\int_{U\cap\Omega}|f|^2dV\leq 4\|\overline{\partial}^*f\|^2+2\|\overline{\partial}f\|^2+C'\|f\|^2.$$

Let $S_{\delta} := \{z \in X : -\delta < \rho(z) \leq 0\}$. Since $b\Omega$ is compact, we can cover $b\Omega$ by a finite number of such neighborhoods U_1, \ldots, U_l such that $S_{\delta} \in \bigcup_{\nu=1}^{l} U_{\nu=1}$ for some positive number δ (dependent on M). Thus it follows that

(3.2)
$$M \int_{S_{\ell}} |f|^2 dV \le C(\|\overline{\partial}^* f\|^2 + \|\overline{\partial} f\|^2 + \|f\|^2)$$

where C is a constant independent of f. Choose $\gamma_{\delta} \in C_0^{\infty}(\Omega)$ so that $0 \leq \gamma_{\delta} \leq 1$ and $\gamma_{\delta}(z) = 1$ whenever $\rho(z) \leq -\delta$. For a constant a still to be determined, we have the inequality $\|\gamma_{\delta}f\|^2 \leq a \|\gamma_{\delta}f\|_1^2 + a^{-1} \|\gamma_{\delta}f\|_{-1}^2$. By Garding's inequality, there is a constant C_1 depending only on the diameter of the domain Ω such that $\|\gamma_{\delta}f\|_1^2 \leq C_1(Q(\gamma_{\delta}f,\gamma_{\delta}f) + \|\gamma_{\delta}f\|^2)$. Now $\|\gamma_{\delta}f\|^2$ can be estimated by

$$\begin{aligned} \|\gamma_{\delta}f\|_{1}^{2} \leq & 2C_{1}(\|\gamma_{\delta}(\overline{\partial}^{*}f)\|^{2} + \|\gamma_{\delta}(\overline{\partial}f)\|^{2} + \|\gamma_{\delta}f\|^{2}) \\ &+ 2C_{1}(\|[\gamma_{\delta},\overline{\partial}^{*}]f\|^{2} + \|[\gamma_{\delta},\overline{\partial}]f\|^{2}). \end{aligned}$$

Since the sum of the commutator terms is bounded by $C_2 ||f||^2$ for some constant C_2 dependent on δ , we obtain the inequality

(3.3)
$$\|\gamma_{\delta}f\|^{2} \leq 2aC_{1}Q(f,f) + 2aC_{1}C_{2}\|f\|^{2} + a^{-1}\|\gamma_{\delta}f\|^{2}_{-1}.$$

Now choose a so that $2aC_1 < \frac{1}{M}$ and so that $2aC_1C_2 < \frac{1}{2}$. By combining (3.2) and (3.3) we obtain

$$\begin{split} M \|f\|^2 &\leq M \int_{S_{\delta}} |f|^2 dV + M \|\gamma_{\delta}f\|^2 \\ &\leq C(Q(f,f) + \|f\|^2) + 2aC_1 MQ(f,f) \\ &\quad + 2aC_1 C_2 M \|f\|^2 + a^{-1} M \|\gamma_{\delta}f\|_{-1}^2 \\ &\leq (C+1)Q(f,f) + (C+\frac{M}{2}) \|f\|^2 + \frac{M}{a} \|\gamma_{\delta}f\|_{-1}^2, \end{split}$$

which gives

$$\|f\|^2 \leq \frac{2(C+1)}{M-2C}Q(f,f) + \frac{2M}{a(M-2C)}\|\gamma_{\delta}f\|^2_{-1}.$$

Now if we choose M so $\frac{2(C+1)}{M-2C} < \varepsilon$ and set

$$\zeta_{\epsilon}(z):=\left(rac{2M}{a(M-2C)}
ight)^{rac{1}{2}}\gamma_{\delta}(z),$$

then we obtain the compactness estimate $||f||^2 \leq \varepsilon Q(f, f) + ||\zeta_{\varepsilon} f||_{-1}^2$.

References

- 1. D. W Catlin, Boundary behavior of holomorphic functions on pseudoconvex domains, Dissertation, Princeton University, 1978.
- Global regularity of the ∂-Neumann problem, Proc. Symp. Pure Math. 41 (1984).
- Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains, Ann. Math. 126 (1987), 131-191.
- 4. L. Hörmander, L^2 estimates and existence theorem for the $\overline{\partial}$ operator, Acta Math 113 (1965), 89-152.
- 5. J.J.Kohn and L Nirenberg, Non-coercive boundary value problems, Pure Appl. Math. 18 (1965), 443-492.

Department of Mathematics Pusan National University Pusan 609-735, Korea 131