Pusan Kyongnam Math J 11(1995), No 1, pp 115-120

ON BINDING SUBSETS

JEAIK LEE AND KEUN PARK

1. Preliminaries

Many of our algebraic ideas and notations come from those of R.C. Lyndon and P.E. Schupp [2]. The concept of a binding subset was introduced by H.C. Lyon [3]. Let W be a finite subset of cyclic elements of a finitely generated free group F. W is said to bind F if W is connected and not contained in any proper free factor of F. By the fact that W is connected we mean that the incidence graph J(W) of W is connected with respect to all bases for F. This paper is concerned with some sufficient conditions for which a finite subset W binds F. Now we introduce Whitehead's theorems and Lyon's free factoring theorem without proofs which are crucial for further consideration:

THEOREM 1.1. [2] Let w_1, w_2, \ldots, w_t and w'_1, w'_2, \ldots, w'_t be cyclic words in a free group F such that $w_i \alpha = w'_i$ $(i = 1, \ldots, t)$ for some $\alpha \in$ Aut(F). If $\sum |w'_i|$ is minimal among all $\sum |w_i \alpha'|$ for all $\alpha' \in Aut(F)$, then there exists a sequence of Whitehead automorphisms of F, say $\alpha_1, \ldots, \alpha_n$, such that

$$\sum_{i=1}^t |w_i \alpha_1 \dots \alpha_j| \le \sum_{i=1}^t |w_i|$$

for all 0 < j < n, with strict inequality unless $\sum |w_i| = \sum |w'_i|$.

THEOREM 1.2. [2] Let $W = \{w_1, \ldots, w_t\}$ be a finite subset of a free group F. If $\alpha \in Aut(F)$ with $|W\alpha| \leq |W|$, there exists a sequence of Whitehead automorphisms $\alpha_1, \ldots, \alpha_n$ such that

$$|W\alpha_1\dots\alpha_j| \leq |W|$$

for $1 \leq j \leq n$

Received June 7, 1995

THEOREM 1.3. [3] Let W be a finite set of elements (respectively, cyclic elements) in the finitely generated free group F. There exists a decomposition $F = F_0 * F_1 * \ldots * F_n$ with $F_i \neq 1$ if $i \neq 0$, such that

- (1) $W \subset \bigcup_{i\neq 0} F_i$;
- (2) $W_i = W \cap F_i$ is non-empty and connected for $1 \le i \le n$;
- (3) The stabilizer of W in the automorphism group (outer automorphism group) of F is the direct product of the stabilizers of the components W_i in the (outer) automorphism groups of the F_i, 1 ≤ i ≤ n;
- (4) If $F = G_1 * G_2$ and $W \subset G_1 \cup G_2$, then each of $W \cap G_1$ and $W \cap G_2$ is the union of certain of the components W_i , and the corresponding F_i are (conjugate to) free factors of G_1 and G_2 , respectively;
- (5) If Y is any basis for F such that $|W|_Y$ is minimal, then each F_i has a basis equal to (conjugate to) some $Y_i \subset Y$; and
- (6) If Y is any basis for F such that $|W|_Y$ is minimal, then the number of basis elements used in so expressing W is minimal.

2. Main Results

THEOREM 2.1. Let W be a finite subset of cyclic elements of the finitely generated free group F with a basis X such that $|W|_X$ is minimal If W is connected with respect to the specific basis X and contains all basis elements of X, then for any basis Y for F, W is connected with respect to Y and not contained in any proper free factor of F. That is, W binds F.

Proof. Let Y be any basis for F. Assume that W is contained in some proper free factor of $F = \langle Y \rangle$. Then the number of basis elements of Y used in so expressing W is less than the rank of F. By theorem 1.3, the number of basis elements of X used in expressin W is minimal and so less than the rank of F. This is impossible. Therefore, we conclude that W is not contained in any proper free factor of $F = \langle Y \rangle$. If W is not connected with respect to Y, then we can decompose Y into two non-empty subsets Y_1 and Y_2 such that

$$W \subset < Y_1 > \cup < Y_2 >$$

Applying the assumption of the theorem to theorem 1.3, we have n = 1 and $F_0 = 1$ and there is only one connected component W itself with respect to Y. From (4) of theorem 1.3, each of $W \cap \langle Y_1 \rangle$ and $W \cap \langle Y_2 \rangle$ is the union of certain of connected components of W. Hence, one, say $W \cap \langle Y_1 \rangle$, of the $W \cap \langle Y_1 \rangle$ (i = 1, 2) must be equal to W. This means that $W \subset \langle Y_1 \rangle$, which is impossible since Y_1 is a proper subset of Y. So W is connected with respect to Y.

Let F be a free group with basis X and W a set of cyclic elements of F. We call W quadratic over a subset X_0 of X if no element $w \in W$ contains any x from X (as x or x_{-1}) except $x \in X_0$ and W contains such x at most twice. We call W strictly quadratic over X_0 if, moreover, each $x \in X_0$ occures in W exactly twice. Note that if W is strictly quadratic and contains all the generators, there exactly two edges at each vertex in the star graph $\sum(W)$ of W, whence if W is finite, $\sum(W)$ is a union of disjoint cycles.

THEOREM 2.2. Let W be a finite set of cyclic elements over a free group F with a basis X. If W is strictly quadratic and the star graph $\sum(W)$ is a cycle, then W binds F

Proof. Suppose that W is not minimal There exists a Whitehead automorphism $\sigma = (A, a)$ such that $|W\sigma| < |W|$; That is, for some $w \in W$, $|w\sigma| < |w|$. Now, we have

$$D(\sigma, w) \stackrel{\text{def}}{=} |w\sigma| - |w| = A \cdot A' - a \cdot X^{\pm 1},$$

where $A' = X_{\pm 1} - A$, $x \cdot y$ is the number of segments of one of the forms xy^{-1} and yx^{-1} in w and $A \cdot A' =$ the sum of $a \cdot b$ ($a \in A, b \in B$). Since W is strictly connected, we have

$$A\dot{A}' < a \cdot X^{\pm 1} = 2.$$

However, since $\sum(W)$ is a cycle, the vertex set $X^{\pm 1}$ can not split into disjoint subsets A and A' with $A \cdot A' = 1$. Hence $A \cdot A' = 0$. This contradicts the assumption that $\sum(W)$ is a cycles. Hence, $|W|_X$ is minimal. Since $\sum(W)$ is a cycle, W is connected with respect to Xand W must contain all generators. Therefore, W is connected. By theorem 2.1, W binds F. REMARK. The minimality of $|W|_X$ in theorem 2.1 is necessary.

3. Example

The following example will demonstrate that the minimality of $|W|_X$ is necessary in theorem 2.1:

EXAMPLE. Let F be a free group with a basis $X = \{x_1, x_2, x_3, x_4\}$ and

$$w_{1} = x_{1}$$

$$w_{2} = x_{1}x_{2}$$

$$w_{3} = x_{1}x_{2}x_{3}$$

$$w_{4} = x_{3}x_{4}x_{3}^{-1}x_{4}^{-1},$$

which are the presentations of simple closed curves on the boundary of a handlebody of genus 4 in Przytycki's wrong example [4]. Even if $W = \{w_1, w_2, w_3, w_4\}$ is connected with respect to X, it does not bind F. We can find a geometric argument in [1] to show that Przytycki was incorrect. In fact, $|W|_X$ is not minimal as it turned out.

If a finite set W of cyclic elements in a free group of finite rank is realized as a finite system of pairwise disjoint, simple closed curves on the boundary of a handlebody, the binding property of W can be checked in terms of a geometric algorithm [1].

4. 3-MANIFOLD GROUP

Each splitting of the fundamental group of a compact 3-manifold with incompressible boundary (possibly empty) as a free product is induced by the splitting of the manifold as a connected sum. If a group $G = \langle x_1, \ldots, x_k; w_1, w_2 \rangle$ with $k \ (k > 1)$ generators and 2 relators is realized by a handlebody H_k together with two disjoint simple closed curves γ_1 and γ_2 on ∂H_k and has properties that

- (1) $\{w_1, w_2\}$ binds F_k and
- (2) neither w_1 nor w_2 binds F_k ,

On Binding Subsets

then $G = \pi_1((H_k)_{\gamma_1\gamma_2}) = \pi_1((H_k)_{\gamma_1\gamma_2}^+)$, $(H_k)_{\gamma_1\gamma_2}$ is equal to D^3 or is equal to an irreducible 3-manifold with incompressible boundary and $(H_k)_{\gamma_1\gamma_2}^+$ is irreducible [4], where M_{γ} is the 3-manifold obtained from M by attaching a 2-handle along γ and M_{γ}^+ is obtained from M_{γ} by attaching a 3-handle. If $(H_k)_{\gamma_1\gamma_2}$ is equal to D^3 , then the group G is trivial. Now, we assume that $(H_k)_{\gamma_1\gamma_2}$ is a 3-manifold with incompressible boundary and $(H_k)_{\gamma_1\gamma_2}^+$ is irreducible. If G has a decomposition $G = G_1 * G_2$ as a free product, then we have

$$(H_k)_{\gamma_1\gamma_2}^+ = M_1 \sharp M_2.$$

where $G_i = \pi_1(M_i)$, i = 1, 2. However, since $(H_k)^+_{\gamma_1 \gamma_2}$ is irreducible (hence, prime), one of the M_i is a 3-sphere. This implies that one of the G_i must be trivial. Thus G can not be decomposed into non-trivial free product. Now, we formulate this as a theorem:

THEOREM 3.1. Let $G = \langle x_1, \ldots, x_k; w_1, w_2 \rangle$ ($k \geq 2$) is realized by a handlebody H_k together with two disjoint simple closed curves on the boundary of H_k . If $\{w_1, w_2\}$ binds $F_k = \langle x_1, \ldots, x_k \rangle$ and none of w_1 and w_2 binds F_k , then G is indecomposible.

To determine whether or not a finite set W binds a free group F, from theorem 2.1 it suffices to check if the set W is connected only with respect to a basis X with $|W|_X$ minimal and each element of Xoccurs in W. Therefore, theorem 1.1 and theorem 1.2 together with theorem 2.1 provide us an algorithm for determining whether or not W binds F; We need only apply Whitehead automorphisms successively until |W| is minimal. This procedure terminates after finite number of applications and we observe the situation at this point.

References

- I J Lee, Incompressible Surfaces, dissertation, Univ of Alabama, 1992
- 2 R. C. Lyndon, P. E. Schupp. Combinatorial Group Theory, Springer-Verlag, Berlin Heidelberg New York, 1977
- 3 H. C. Lyon, Incompressible surfaces in the boundary of a handlebody an algorithm, Canad J. Math. 32 (1980), 590-595.

Jeark Lee and Keun Park

4 J H. Przytyki, n-Relator 3-manifolds with incompressible boundary, London Math. Sco Lecture Note 112 (1986), 273-285.

Department of Applied Mathematics Dongseo University Pusan, Korea

Department of Mathematics University of Ulsan Ulsan, Korea

120