Pusan Kyöngnam Math. J. 11(1995), No. 1, pp. 81-86

THE GENERALIZED HURWITZ ZETA FUNCTION

TAE YOUNG SEO AND BO MYOUNG OK

1. Introduction and Preliminaries

In [2], Barnes defines the generalized Hurwitz zeta function as follows :

$$\zeta(s,a,w) = \sum_{n=0}^{\infty} \frac{1}{(a+nw)^s},$$

which can be continued analytically to the whole s-plaine except a simple pole at s = 1. For all values s, a and w with $\operatorname{Re}(\frac{a}{w}) > 0$ and $\operatorname{Re}(w) > 0$, we can represent by the contour integral

(1)
$$\zeta(s,a,w) = \frac{i\Gamma(1-s)}{2\pi} \int_C \frac{e^{-az}}{(1-e^{-wz})} (-z)^{s-1} dz,$$

where the contour C is a loop around the axis of w^{-1} round the origin from $+\infty$ to $+\infty$ as in Fig.1, and $(-z)^{s-1}$ being equal to $e^{(s-1)\log(-z)}$, where the real value of the logarithm is to be taken when z is negative. The contour must not embrace any zeroes of $1 - e^{-wz}$ except the origin. It is clear that $\zeta(s, a, 1) = \zeta(s, a)$ where $\zeta(s, a)$ is the well-known Hurwitz zeta function and $\zeta(s, 1) = \zeta(s)$, where $\zeta(s)$ is the Riemann zeta function. In this note we deduce some properties of $\zeta(s, a, w)$ and generalize some results of $\zeta(s, a)$.

Received May 9, 1995

Tae Young Seo and Bo Myoung Ok

Fig. 1.

2. Some properties of $\zeta(s, a, w)$

We can express $\zeta(s, a, w)$ as a series of circular functions. THEOREM 2.1. We have, for $Re(\frac{a}{w}) > 0$ and Re(w) > 0,

(2)

$$\zeta(s, a, w) = \Gamma(1 - s)w^{-s}2^{s-1}\pi^{s-1} \times \sum_{m=1}^{\infty} m^{s-1}2\cos[\frac{\pi}{2}(s-1) + \frac{a}{w}2m\pi].$$

Proof. For the proof we make use of the contour $\Gamma_n = C_n - C$ in Fig.2.

We assume that the square C_n contains the points $\pm \frac{2m\pi}{w} i, m = 1, 2, \cdots, n$ and the contour C reduce the contour to a straight line from $+\infty$ to ϵ ,

a small circle of radius ϵ round the origin, and a straight line back from $+\epsilon$ to $+\infty$. Since the contour Γ_n has winding number one about the points $\pm \frac{2m\pi i}{w}$ with $m = 1, \ldots, n$. At these points $z = \pm \frac{2m\pi i}{w}$, the function $\frac{e^{(w-a)z}}{e^{wz}-1}(-z)^{s-1}$ has simple poles with residues $(\frac{e}{w})^{\frac{\omega}{w}}(\mp \frac{2m\pi i}{w})^{s-1}$. It follows that

$$\frac{1}{2\pi i} \int_{\Gamma_n} \frac{e^{(w-a)z}}{e^{wz} - 1} (-z)^{s-1}$$

= $\sum_{m=1}^n w^{-s} (2m\pi)^{s-1} 2\cos(\frac{\pi}{2}(s-1)) [e^{-\frac{a}{w}2m\pi i} + e^{\frac{a}{w}2m\pi i}].$

If $\operatorname{Re}(s) < 0$, the integral over C_n will tend to zero as $n \to \infty$ Therefore, the integral over $C_n - C$ will tend to the integral over -Cas $n \to \infty$.

Hence,

$$\frac{1}{2\pi i} \int_{-C} \frac{e^{(w-a)z}}{e^{wz} - 1} (-z)^{s-1} dz$$

= $w^{-s} 2^{s-1} \pi^{s-1} \sum_{m=1}^{\infty} m^{s-1} [2\cos(\frac{\pi}{2}(s-1))\cos(\frac{a}{w}2m\pi)]$
- $2\sin(\frac{\pi}{2}(s-1))\sin(\frac{a}{w}2m\pi)].$

We can thus have the desired expression (2)

COROLLARY 2.2. We have , letting w = a in (2), our generalized Hurwitz zeta function can be reduced to the Riemann zeta function as follows:

$$\zeta(s,w,w) = \frac{\zeta(s)}{w^s}$$

Now, we define the generalized Bernoulli polynomials and numbers and then can evaluate $\zeta(s, a, w)$ for some special values of s. DEFINITION 2.3. The generalized Bernoulli polynomials $B_l(x, w)$ and numbers $B_l(0, w)$ are defined by respectively, for any complex number x,

$$\frac{ze^{z}}{e^{wz}} = \sum_{l=0}^{\infty} \frac{B_l(x,w)}{l!} z^l, \qquad |z| < \frac{2\pi}{|w|},$$
$$\frac{z}{e^{wz} - 1} = \sum_{l=0}^{\infty} \frac{B_l(0,w)}{l!} z^l, \qquad |z| < \frac{2\pi}{|w|}.$$

Note that $B_l(x,1) = B_l(x)$ and $B_l(0,1) = B_l$, where $B_l(x)$ and B_l are Bernoulli polynomials and numbers.

THEOREM 2.4. We have, for every nonnegative integers l,

$$B_l(x,w) = (-1)^l B_l(w-x,w).$$

Proof. For $|z| < \frac{2\pi}{w}$, we have

$$-\frac{ze^{(w-x)z}}{e^{wz}-1} = \sum_{l=0}^{\infty} \frac{B_l(w-x,w)}{l!} z^l.$$

Replacing z by -z in the resulting identity leades to

$$\frac{(-z)e^{(x-w)z}}{e^{-wz}-1} = \sum_{l=0}^{\infty} \frac{B_l(w-x,w)}{l!} (-z)^l.$$

On the other hand

.

$$\frac{(-z)e^{(x-w)z}}{e^{-wz}-1} = \frac{ze^{xz}}{e^{wz}-1} = \sum_{l=0}^{\infty} \frac{B_l(x,w)}{l!} z^l.$$

Equating coefficients of z^{l} , we obtain the desired result.

THEOREM 2.5. For every integer $l \ge 0$, we have

$$\zeta(-l, a, w) = (-1)^{l} \frac{B_{l+1}(w - a, w)}{l+1}.$$

Proof. From (1), we have $\zeta(s, a, w) = \Gamma(1 - s)I(s, a, w)$, where

$$I(s, a, w) = -\frac{1}{2\pi i} \int_C \frac{e^{-az}}{1 - e^{-wz}} (-z)^{s-1} dz$$

Hence,

$$I(-l, a, w) = -\operatorname{Res}_{z=0} \frac{e^{-az}}{1 - e^{-wz}} (-z)^{-l-1}$$
$$= \frac{(-1)^l}{(l+1)!} B_{l+1}(w - a, w).$$

From Theorems 2.4 and 2.5, we have the following.

COROLLARY 2.6 For every integer $l \ge 0$, we have

$$\zeta(-l,a,w) = -\frac{1}{l+1}B_{l+1}(a,w)$$

THEOREM 2.7. From Theorems 2.1 and Corollary 2.6, we can express Fourier sine and cosine series of $B_{2k+1}(a, w)$ and $B_{2k}(a, w)$:

$$B_{2k+1}(a,w) = (-1)^{k} (2k+1)! w^{2k} (2\pi)^{-2k-1} \sum_{m=1}^{\infty} 2m^{-2k-1} \sin(\frac{a}{w} 2m\pi)$$
$$B_{2k}(a,w) = (-1)^{k+1} (2k)! w^{2k-1} (2\pi)^{-2k} \sum_{m=1}^{\infty} 2m^{-2k} \cos(\frac{a}{w} 2m\pi)$$

for $k = 1, 2, 3, \ldots$

Proof. From (2), letting $s = -2k, k = 1, 2, \ldots$ Then

(3)
$$\zeta(-2k, a, w) = \Gamma(2k+1)w^{2k}2^{-2k-1}\pi^{-2k-1} \times \sum_{m=1}^{\infty} 2m^{-2k-1}(-1)^{k+1}\sin(\frac{a}{w}2m\pi).$$

And from Corollary 2.6, we get the following

(4)
$$\zeta(-2k,a,w) = -\frac{1}{2k+1}B_{2k+1}(a,w).$$

Comparing (3) and (4) yields the desired results.

Letting a = 0 and w = 1 in Theorem 2.7, we have the followings.

COROLLARY 2.8. For k = 1, 2, 3, ...,

$$B_{2k+1}(0,1) = B_{2k+1} = 0$$

$$B_{2k}(0,1) = B_{2k} = (-1)^{k+1} (2k)! (2\pi)^{-2k} 2\zeta(2k).$$

where the above equalities are well known result (see [4,p.332]).

References

- 1 L V Ahlfors, Complex Analysis(3rd Edi), McGraw-Hill Book Company, 1979
- 2 E W Barnes, The theory of the Gamma Function, Messenger of Math 29 (1899), 64-128
- 3 A R Forsyth, Theory of Function of a Complex Variable, Cambridge University Press, 1900
- 4. M O González, Complex Analysis, (Selected Topics) , Dekker, Inc., 1992

Department of Mathematics Pusan National University Pusan, Korea 609–735