THE GENERALIZED HURWITZ ZETA FUNCTION

Tae Young Seo and Bo Myoung Ok

1. Introduction and Preliminaries

In [2], Barnes defines the generalized Hurwitz zeta function as follows :

$$
\zeta(s, a, w)=\sum_{n=0}^{\infty} \frac{1}{(a+n w)^{s}},
$$

which can be continued analytically to the whole s-plaine except a simple pole at $s=1$. For all values s, a and w with $\operatorname{Re}\left(\frac{a}{w}\right)>0$ and $\operatorname{Re}(w)>0$, we can represent by the contour integral

$$
\begin{equation*}
\zeta(s, a, w)=\frac{\imath \Gamma(1-s)}{2 \pi} \int_{C} \frac{e^{-a z}}{\left(1-e^{-w z}\right)}(-z)^{s-1} d z, \tag{1}
\end{equation*}
$$

where the contour C ic a loop around the axis of w^{-1} round the origin from $+\infty$ to $+\infty$ as in Fig.1, and $(-z)^{s-1}$ being equal to $e^{(s-1) \log (-z)}$, where the real value of the logarithm is to be taken when z is negative. The contour must not embrace any zeroes of $1-e^{-w z}$ except the origin. It is clear that $\zeta(s, a, 1)=\zeta(s, a)$ where $\zeta(s, a)$ is the well-known Hurwitz zeta function and $\zeta(s, 1)=\zeta(s)$, where $\zeta(s)$ is the Riemann zeta function. In this note we deduce some properties of $\zeta(s, a, w)$ and generalize some results of $\zeta(s, a)$.

Fig. 1.

2. Some properties of $\zeta(s, a, w)$

We can express $\zeta(s, a, w)$ as a series of circular functions.
Theorem 2.1. We have, for $\operatorname{Re}\left(\frac{a}{w}\right)>0$ and $\operatorname{Re}(w)>0$,

$$
\zeta(s, a, w)=\Gamma(1-s) w^{-s} 2^{s-1} \pi^{s-1}
$$

$$
\begin{equation*}
\times \sum_{m=1}^{\infty} m^{s-1} 2 \cos \left[\frac{\pi}{2}(s-1)+\frac{a}{w} 2 m \pi\right] . \tag{2}
\end{equation*}
$$

Proof. For the proof we make use of the contour $\Gamma_{n}=C_{n}-C$ in Fig.2.

Fig. 2.
We assume that the square C_{n} contains the points $\pm \frac{2 m \pi}{w} 2, m=1,2, \cdots, n$ and the contour C reduce the contour to a straight line from $+\infty$ to ϵ,
a small circle of radius ϵ round the origin, and a straight line back from $+\epsilon$ to $+\infty$. Since the contour Γ_{n} has winding number one about the points $\pm \frac{2 m \pi i}{w}$ with $m=1, \ldots, n$. At these points $z= \pm \frac{2 m \pi z}{w}$, the function $\frac{e^{(u-a) z}}{e^{u z-1}}(-z)^{s-1}$ has simple poles with residues $\left(\frac{e}{w}\right)^{\frac{o}{w}}\left(\mp \frac{2 m \pi z}{w}\right)^{s-1}$. It follows that

$$
\begin{aligned}
& \frac{1}{2 \pi l} \int_{\Gamma_{n}} \frac{e^{(w-a) z}}{e^{w z}-1}(-z)^{s-1} \\
& =\sum_{m=1}^{n} w^{-s}(2 m \pi)^{s-1} 2 \cos \left(\frac{\pi}{2}(s-1)\right)\left[e^{-\frac{c}{w} 2 m \pi \tau}+e^{\frac{a}{w} 2 m \pi t}\right]
\end{aligned}
$$

If $\operatorname{Re}(s)<0$, the integral over C_{n} will tend to zero as $n \rightarrow \infty$ Therefore, the integral over $C_{n}-C$ will tend to the integral over $-C$ as $n \rightarrow \infty$.

Hence,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{-C} \frac{e^{(w-a) z}}{e^{w z}-1}(-z)^{s-1} d z \\
& =w^{-s} 2^{s-1} \pi^{s-1} \sum_{m=1}^{\infty} m^{s-1}\left[2 \cos \left(\frac{\pi}{2}(s-1)\right) \cos \left(\frac{a}{w} 2 m \pi\right)\right. \\
& \left.-2 \sin \left(\frac{\pi}{2}(s-1)\right) \sin \left(\frac{a}{w} 2 m \pi\right)\right]
\end{aligned}
$$

We can thus have the desired expression (2)
Corollary 2.2. We have, letting $w=a$ in (2), our generalized Hurvitz zeta function can be reduced to the Riemann zeta function as follows:

$$
\zeta\left(s, w^{\prime}, w\right)=\frac{\zeta(s)}{w^{s}}
$$

Now, we define the generalized Bernoulli polynomals and numbers and then can evaluate $\zeta(s, a, w)$ for some special values of s.

Definition 2.3. The generlaized Bernoulli polynomials $B_{l}(x, w)$ and numbers $B_{l}(0, w)$ are defined by respectively, for any complex number x,

$$
\begin{array}{rlrl}
\frac{z e^{\lambda z}}{\epsilon^{u l z}}=\sum_{l=0}^{\infty} \frac{B_{l}(x, w)}{l!} z^{l}, & |z|<\frac{2 \pi}{|w|}, \\
\frac{z}{\epsilon^{w z}-1} & =\sum_{l=0}^{\infty} \frac{B_{l}(0, w)}{l!} z^{l}, & |z|<\frac{2 \pi}{|w|} .
\end{array}
$$

Note that $B_{l}(x, 1)=B_{l}(x)$ and $B_{l}(0,1)=B_{l}$, where $B_{l}(x)$ and B_{l} are Bernoulli polynomials and numbers.

Theorem 2.4. We have, for every nonnegative integers l,

$$
B_{l}(x, w)=(-1)^{l} B_{l}(w-x, w) .
$$

Proof. For $|z|<\frac{2 \pi}{w}$, we have

$$
\frac{z e^{(w-x) z}}{e^{w z}-1}=\sum_{l=0}^{\infty} \frac{B_{l}(w-x, w)}{l!} z^{l} .
$$

Replacmg z by $-z$ in the resulting identity leades to

$$
\frac{(-z) e^{(x-w) z}}{e^{-w z}-1}=\sum_{l=0}^{\infty} \frac{B_{l}(w-x, w)}{l!}(-z)^{l} .
$$

On the other hand

$$
\frac{(-z) e^{(x-w) z}}{e^{-w z}-1}=\frac{z e^{x z}}{e^{w z}-1}=\sum_{l=0}^{\infty} \frac{B_{l}(x, w)}{l!} z^{l} .
$$

Equating coefficients of z^{l}, we obtain the desired result.

Theorem 2.5. For every integer $l \geq 0$, we have

$$
\zeta(-l, a, w)=(-1)^{\prime} \frac{B_{l+1}(w-a, w)}{l+1} .
$$

Proof. From (1), we have $\zeta(s, a, w)=\Gamma(1-s) I(s, a, w)$, where

$$
I(s, a, w)=-\frac{1}{2 \pi i} \int_{C} \frac{e^{-a z}}{1-e^{-w z}}(-z)^{s-1} d z
$$

Hence,

$$
\begin{aligned}
I(-l, a, w) & =-\operatorname{Res}_{z=0} \frac{e^{-a z}}{1-e^{-w z}}(-z)^{-l-1} \\
& =\frac{(-1)^{l}}{(\bar{l}+1)!} B_{l+1}(w-a, w) .
\end{aligned}
$$

From Theorems 2.4 and 25, we have the following.
Corollary 2.6 For every integer $l \geq 0$, we have

$$
\zeta(-l, a, w)=-\frac{1}{l+1} B_{l+1}(a, w)
$$

Theorem 2.7. From Theorems 2.1 and Corollary 2.6, we can express Fourier sine and cosine series of $B_{2 k+1}(a, w)$ and $B_{2 k}(a, w)$:

$$
\begin{aligned}
B_{2 k+1}(a, w) & =(-1)^{k}(2 k+1)!w^{2 k}(2 \pi)^{-2 k-1} \sum_{m=1}^{\infty} 2 m^{-2 k-1} \sin \left(\frac{a}{w} 2 m \pi\right) \\
B_{2 k}(a, w) & =(-1)^{k+1}(2 k)!w^{2 k-1}(2 \pi)^{-2 k} \sum_{m=1}^{\infty} 2 m^{-2 k} \cos \left(\frac{a}{w} 2 m \pi\right)
\end{aligned}
$$

for $k=1,2,3, \ldots$
Proof. From (2), letting $s=-2 k, k=1,2, \ldots$ Then

$$
\begin{align*}
\zeta(-2 k, a, w) & =\Gamma(2 k+1) w^{2 k} 2^{-2 h-1} \pi^{-2 h-1} \\
& \times \sum_{m=1}^{\infty} 2 m^{-2 h-1}(-1)^{k+1} \sin \left(\frac{a}{w} 2 m \pi\right) . \tag{3}
\end{align*}
$$

And from Corollary 2.6, we get the following

$$
\begin{equation*}
\zeta(-2 k, a, w)=-\frac{1}{2 k+1} B_{2 k+1}(a, w) . \tag{4}
\end{equation*}
$$

Comparing (3) and (4) yields the desired results.
Letting $a=0$ and $w=1$ in Theorem 2.7, we have the followings.
Corollary 2.8. For $k=1,2,3, \ldots$,

$$
\begin{aligned}
B_{2 k+1}(0,1) & =B_{2 k+1}=0 \\
B_{2 k}(0,1) & =B_{2 k}=(-1)^{k+1}(2 k)!(2 \pi)^{-2 k} 2 \zeta(2 k) .
\end{aligned}
$$

where the above equalities are well known result (see [4,p. 332]).

References

1 LV Ahlfors, Complex Analyszs(3rd Edz), McGraw-Hıll Book Company, 1979
2 E W Barnes, The theory of the Gamma Function, Messenger of Math 29 (1899), 64-128

3 A R Forsyth, Theory of Function of a Complex Varable, Cambridge Unversity Press, 1900
4. M O González, Complex Analysıs, (Selected Topics) ,Dekker,Inc., 1992

Department of Mathematics
Pusan National University
Pusan, Korea 609-735

