IRREDUCIBLE MODULES FOR SOME METACYCLIC GROUPS

Hyo-Seob Sim

The aim of this note is to give an explicit description of all isomorphism types of irreducible modules over a finite field for a metacyclic group presented by $\left\langle x, y \mid x^{m}=1, y^{q}=1, y^{-1} x y=x^{r}\right\rangle$ where q is a prime and r is a q-th roots of 1 modulo m. The main results of this note generalize the invesigation by Barlotti [1] for metacyclic groups of order $p q(p, q$. primes $)$.

1. Background Resuits

We first set up some notation which will be kept throughout this note. Let \mathbb{F} be a finite field and let $a(n)$ denote the multiplicative order of $|\mathbb{F}|$ modulo n for every positive integer n. Let $G(m, n)$ be a metacyclic group defined by

$$
G(m, n)=\left\langle x, y \mid x^{m}=1, y^{n}=1, y^{-1} x y=x^{r}\right\rangle
$$

where r is a primitive n-th root of 1 modulo m; note that all possible such r give the same group for the fixed integers m and n. When n is a prime, for each positive divisor d of m the group defined by

$$
\left\langle x, y \mid x^{d}=1, y^{n}=1, y^{-1} x y=x^{r}\right\rangle
$$

is $G(d, n)$ provided that d does not divide $r-1$, while the group is abelian if d divides $r-1$.

Most of notation and terminology which are not defined in this note are standard, or can be found in [3] or [2].

We continue with some important construction of faithful irreducible modules for the group $G(m, n)$.

Construction 1.1. Let m be a positive integer not divisible by the characteristic of \mathbb{F} and let n be a divisor of $a(m)$. Let \mathbb{K} be the field with $|\mathbb{F}|^{a(m)}$ elements, let u be an element of multiplicative order m in \mathbb{K}, and write V for the \mathbb{K} viewed as a vector space over \mathbb{F}.
(a) There is an action of $G(m, n)$ on V such that for every v in V,

$$
v x=v u \text { and } v y=v^{|\bar{F}|^{a(m) / n}} \text {. }
$$

(b) Under the action in (a), V is a faithful irreducible module for $G(m, n)$ over \mathbb{F}; denote the module by $V(u)$.
(c) $E n d_{\mathbb{F G}(m, n)} V(u)$ is the field with $|\mathbb{F}|^{a(m) / n}$ elements; in particular, if $n=\alpha(m)$ then $V(u)$ is an absolutely irreducible faithful module for $G(m, n)$ over \mathbb{F}.

Note that this construction is well known for $d=1$ from the representation theory of cyclic groups, while the proof for the general case can be found in [1]. It is also well known that every faithful irreducible module for a finite cyclic group (say, $\mathrm{G}(\mathrm{m}, 1)$ here) is realized as such a module described in this construction, and $V(u)$ and $V(v)$ are isomorphic if and only if u and v are roots of the same irreducible factor of $x^{m}-1$ in $\mathbb{F}[x]$.

Let A be a finite abelian group and V an irreducible $\mathbb{F} A$-module. The factor group of A by the kernel $\{g \in A: v g=v$ for all $v \in V\}$ of V is cyclic. Conversely, every subgroup of A with cyclic quotient becomes the kernel of a certain irreducible $\mathbb{F} A$-module, provided that the characteristic of \mathbb{F} does not divide the order of the cyclic quotient. This leads to a conplete description of the irreducible modules for a finite abelian group over a finite field.

Suppose that the abelian group A is metacyclic. Then A is a direct product of two finite cyclic groups C_{m} and C_{n} for some nonnegative integers m and n such that n divides m. For any positive divisor d of m we define $\#(d)$ to be the number of all cyclic quotients of order d of A. If the characteristic of \mathbb{F} does not divide m, there exists precisely $\sum_{d \mid m} \#(d) \cdot \phi(d) / a(d)$ pairwise nonisomorphic irreducible modules for A over \mathbb{F}.

2. Main Results

Let p be the characteristic of \mathbb{F}, let q be a fixed prime, let m be a fixed positive integer and let d be a positive divisor of m. Let G be a finite group whose factor group by the largest normal p-subgroup $O_{p}(G)$ is isomorphic to $G(m, q)$. Since $O_{p}(G)$ is contained in the kernels of all irreducible $\mathbb{F} G$-modules, there is a natural one-to-one correspondence between the irreducible $\mathbb{F} G$-modules and the irreducible $\mathbb{F} G(m, q)$-modules.

We now consider faithful irreducible modules for $G(m, q)$ whose order is not divisible by p. The cyclic normal subgroup generated by x in $G(m, q)$ is denoted by M.

Theorem 2.1. If q divides $a(m)$, every faithful irreducible module for $G(m, q)$ over \mathbb{F} is isomorphic to an $\mathbb{F} G(m, q)$-module described in Construction 1.1 So there exist precisely $\phi(m) / a(m)$ isomorphism types of faithful irreducible modules for $G(m, q)$ over \mathbb{F}.

Proof. Let V_{1}, \ldots, V_{n} be pairwise nonisomorphic faithful irreducible modules for M over \mathbb{F}, where $n=\phi(m) / a(m)$. Let W_{1}, \ldots, W_{n} be the faithful irreducible modules for $G(m, q)$ over \mathbb{F}, as described in Construction 1.1, such that $\left(W_{t}\right)_{M} \cong V_{2}$ for all $\imath=1, \ldots, n$ Then $\mathbb{F} M=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{n}$ for some $\mathbb{F} M$-module V_{0}. It follows that $\mathbb{F} G(m, q) \cong V_{0}^{G(m, q)} \oplus V_{1}^{G(m, q)} \oplus \cdots \oplus V_{n}^{G(m, q)}$. For each $\imath=1, \ldots, n$, the multiplicity of W_{2} as a composition factor in the head of $V_{t}^{G(m, q)}$ is $\left(\operatorname{dim}_{\boldsymbol{Y}} \operatorname{End}_{\Gamma M} V_{\imath}\right) /\left(\operatorname{dim}_{\boldsymbol{Y}} \operatorname{End}_{\bar{F}(m, q)} W_{2}\right)=a(m) /(a(m) / q)=q$ by Construction 1.1 (c) and Theorem 4.13 in [2]. Thercfore, $V_{t}^{G(m, q)}$ is isomorphic to the direct sum of q copies of W_{2}.

Let W be a irreducible $\mathbb{P} G(m, q)$-module which is not isomorphic to $W_{\text {z }}$ for all $i=1, \ldots, n$. Then W is a homomorphic image of $V^{G(m, q)}$ for some irreducible submodule V of V_{0}, and hence V is isomorphic to a submodule of W_{M}. It follows that $\operatorname{Ker} W \geqslant \operatorname{Ker} V^{G(m, q)}=$ $\operatorname{Core}_{G(m, g)} \operatorname{Ker} V=\operatorname{Ker} V \neq 1$, which implies W is not faithful. Consequently, every faithful irreducible module for $G(m, q)$ over \mathbb{F} is isomorphic to one of the W_{t}.

Lemma 2.2. Let V a faithful irreducible module for M over \mathbb{F}. If q does not divide $a(m)$, then V is not isomorphic to $V \& y$.

Proof. There are precisely $\phi(m) / a(m)$ isomorphism types of faithful irreducible modules for M over \mathbb{F}, which are transitively permuted by

Aut M. It follows that the stabilizer in Aut M of the isomorphism type of V is a subgroup of index $\phi(m) / a(m)$ in Aut M (equivalently, of order $a(m)$).

The statement $V \cong \mathbf{\cong} \boldsymbol{Y} \otimes y$ says that the element which maps x to x^{r} (of order q) in Aut M lies in this subgroup of order $a(m)$. It follows that $V \cong_{\mathbf{F} M} V \bigcirc y$ implies $y \mid a(m)$.

THEOREM 2.3. If q does not divide $a(m)$, then
(a) every $\mathbb{F} G(m, q)$-module induced from a faithful irreducible module for M over \mathbb{F} is faithful and irreducible;
(b) every faithful irreducible module for $G(m, q)$ over \mathbb{F} is induced from a faithful irreducible module for M over \mathbb{F}.

Proof. (a) Let V be a faithful irreducible module for M over \mathbb{F}. Then $V^{G(m, q)}$ is faithful, since the kernel of $V^{G(m, q)}$ is the core of the kernel of V in $G(m, q)$. By Lemma 2.2 and Theorem 9.6 b) in [3], $V^{G(m, q)}$ is irreducible.
(b) Let V_{1}, \ldots, V_{n} be the $\phi(m) / a(m)$ pairwise nonisomorphic faithful irreducible modules for M over \mathbb{F}. Suppose $\mathbb{F} M=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{n}$. Then $\mathbb{F} G(m, q) \cong V_{0}^{G(m, q)} \oplus V_{1}^{G(m, q)} \oplus \cdots \oplus V_{n}^{G(m, q)}$. No irreducible constituent of V_{0} is faithful, so every faithful irreducible module for $G(m, q)$ over \mathbb{F} is isomorphic to one of the $V_{\imath}^{G(m, q)}$.

Corollary 2.4. Assume that the characteristic of F does not divide d. There exist precisely $\phi(d) /[a(d), q]$ isomorphism types of faithful irreducible modules for $G(d, q)$ over \mathbb{F}, where $[a(d), q]$ is the least common multiple of $a(d)$ and q

Proof. If q divides $a(d)$, then from Theorem 2.1 , there exist precisely $\phi(d) / a(d)$ isomorphism types of faithful irreducible modules for $G(d, q)$ over \mathbb{F}.

If q does not divide $a(d)$, then $V_{i} \cong V_{2} \times y^{j}$ for all $j=0, \ldots, q-1$, by Lemma 2.2. Since $V_{1}^{G(n, q)} \cong V_{j}^{G(m, q)}$ if and only if $V_{t} \cong V_{J} \otimes y^{k}$ for some $k=0, \ldots, q-1$, the multiplicity of V_{τ} as a composition factor $\mathrm{m} V_{1}^{G(m, q)} \oplus \cdots \oplus V_{n}^{G(m, q)}$ is q for all $\imath=1, \ldots, n$. Hence there are exactly $\phi(d) / \alpha(d) q$ isomorphism types of faithful irreducible modules for $G(d . q)$ over \mathbb{F}

Let d_{0} be the greatest common divisor m and $r-1$, and let Δ be
the set of all positive divisors of m which do not divide $r-1$. Then we have

Theorem 2.5. Let G be a finite group whose factor group by the largest normal p-subgroup is isomorphic to $G(m, q)$. There is a one-toone correspondence between the set of isomorphism types of all irreducible $\mathbb{F G}$-modules and the union of the following two sets: (i) the set of isomorphism types of all faithful irreducible $\mathbb{F} G(d, q)$-modules, where d runs through Δ, (ii) the set of isomorphism types of all irreducible $\mathbb{F}\left(C_{d_{0}} \times C_{f}\right)$-modules.

Proof. Suppose N is a normal subgroup of $G(m, q)$. If N contains the commutator subgroup $G(m, q)^{\prime}$ then $G(m, q) / N$ is abelian; otherwise, N is contained in M, so $G(m, q) / N \cong G(d, q)$ for some d in Δ. On the other hand, for each d in Δ there exists a unique normal subgroup N such that $G(d, q) \cong G(m, q) / N$. Since $G(m, q)^{\prime}=\left\langle x^{r-1}\right\rangle$ it follows easily that $G(m, q) / G(m, q)^{\prime} \cong C_{d_{0}} \times C_{q}$, and hence the theorem is proven.

References

1 Marco Barloti, Fathful smple modules for the nonabelian group of order pq, Lecture Notes in Mathematics 1281 (1987), i-8
2. Klaus Doerk, Trevor Hawkes, Finte soluble groups, de Gruyter Expositions in Mathematics 4, de Gruyter, Berlin New York, 1992
3 B Huppert, N Blackburn, Fzzzte Groups II, Springer-Verlag, Berlin Heidelberg New York, 1982

Department of Natural Sciences
Pusan National University of Technology
Pusan 608-739

