Pusan Kyöngnam Math J 11(1995), No 1, pp 27-34

ON CERTAIN AREA FUNCTIONS ASSOCIATED WITH APPROACH REGIONS

CHOON-SERK SUH

1.Introduction

In this paper we first define a group of homogeneous type G, which is a more general setting than \mathbb{R}^n , and we also consider the space $G \times (0, \infty)$, which is a kind of generalized upper half-space over G. Then we shall assume that to each boundary point $x \in G$, there is associated an approach region $\Gamma_{\alpha}(x) \subset G \times (0, \infty)$. Let f be a function defined on $G \times (0, \infty)$. For $x \in G$ and $\alpha > 0$, we define an area function $S_{\alpha}(f)$ associated with $\Gamma_{\alpha}(x)$, by

$$S_{\alpha}(f)(x) = \left(\int_{\Gamma_{\alpha}(x)} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{n+1}}\right)^{1/2}$$

٩

where μ denotes the Borel measure on G. For simplicity, we put $S(f) = S_1(f)$. The purpose of this paper is to study inequalities for the L^p norms of area functions $S_{\alpha}(f)$ and S(f) for $\alpha > 1$; more precisely, let $0 and <math>\alpha > 1$, then there is a constant C such that

$$||S_{\alpha}(f)||_{L^{p}(d\mu)} \leq C||S(f)||_{L^{p}(d\mu)}.$$

Throughout this paper we shall use the letter C to denote a constant which need not be the same at each occurrence.

Received March 29, 1995

2.Preliminaries

Let G be a topological group. Assume that d is a pseudo-distance on G, i.e., a nonnegative function defined on $G \times G$ with properties

- (i) d(x,x) = 0; d(x,y) > 0 if $x \neq y$,
- (ii) d(x,y) = d(y,x), and
- (iii) there is a constant K such that

$$d(x,z) \leq K[d(x,y) + d(y,z)]$$
 for all $x, y, z \in G$.

Assume also that

(a) the balls $B(x, \rho) = \{y \in G : d(x, y) < \rho\}, \rho > 0$, form a basis of open neighborhoods at $x \in G$,

and that μ is a Borel measure on G, and

(b) there is a constant A such that

$$0 < \mu(B(x, 2\rho)) \le A\mu(B(x, \rho)) < \infty$$
 for all $x \in G, \rho > 0$.

Assume further that μ is left-invariant:

- (c) $\mu(xE) = \mu(E)$ for $x \in G$, measurable $E \subset G$, and
- (d) $\mu(E^{-1}) = \mu(E),$

and that d is left-invariant:

(e) $xB(y,\rho) = B(xy,\rho)$ for all $x, y \in G$, $\rho > 0$.

Then we call (G, d, μ) a group of homogeneous type. Let (G, d, μ) be a group of homogeneous type and $\rho > 0$. Then an automorphism δ_{ρ} of G is called a *dilation* of G if there is a positive integer n such that

(1)
$$\mu(\delta_{\rho}(E)) = \rho^{n} \mu(E)$$

for any measurable $E \subset G$, and in particular,

(2)
$$\mu(\delta_{\rho}(B(\epsilon,1))) = \mu(B(\epsilon,\rho)) = C_n \rho^n,$$

where C_n denotes the volume of the unit ball B(e, 1), and e denotes the identity element of G. Frequently, we shall write ρx instead of $\delta_{\rho} x$ for $\rho > 0$ and $x \in G$. For details see [6]. A. Korányi and S. Vági [3] studied that d is left-invariant if and only if

$$d(x,y) = |x^{-1}y|,$$

where $|\cdot|$ is a nonnegative function on G with properties

- (i) |x| = 0 if and only if x = e,
- (ii) there is a constant K such that $|xy| \leq K(|x| + |y|)$, and
- (iii) $|x^{-1}| = |x|$.

For $x, y \in G$ and $\rho > 0$, the set

$$B(x,\rho) = \{y \in G : |x^{-1}y| < \rho\}$$

is called the *ball* centered at $x \in G$ with radius ρ . Now consider the space $G \times (0, \infty)$, which is a kind of generalized upper half-space over G We then introduce the analogue of nontangential or conical region. For $x \in G$ and $\alpha > 0$, set

$$\Gamma_{\alpha}(x) = \{(y,t) \in G \times (0,\infty) : |x^{-1}y| < \alpha t\}.$$

For simplicity, we put $\Gamma(x) = \Gamma_1(x)$. For any closed subset $F \subset G$ and $\alpha > 0$, set

$$\mathcal{R}_{\alpha}(F) = \bigcup_{x \in F} \Gamma_{\alpha}(x)$$

Then the *tent* over an open subset $O = {}^{c}F$ of G, denoted by T(O), is given as

$$T(O) = {}^{c}\mathcal{R}_1(F).$$

We define an area function associated with an approach region as follows. Let f be a function defined on $G \times (0, \infty)$. For $x \in G$ and $\alpha > 0$, set

$$S_{\alpha}(f)(x) = \left(\int_{\Gamma_{\alpha}(x)} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{n+1}}\right)^{1/2}$$

Let f be a locally integrable function on G. For $x \in G$, we define

$$M(f)(x) = \sup_{x \in B} \frac{1}{\mu(B)} \int_B |f(y)| d\mu(y),$$

where the supremum is taken over all balls B containing x. Then M(f) is called the Hardy-Littlewood maximal function of f. We need the notion of points of density. Suppose F is a closed subset of G and γ is a fixed parameter, $0 < \gamma < 1$. Then we say t hat a point $x \in G$ has global γ -density with respect to F, if

$$\frac{\mu(F\cap B)}{\mu(B)} \geq \gamma$$

for all balls B centered at x in G. Let F^* be the set of points of global γ -density with respect to F; then F^* is closed, $F^* \subset F$, and

$${}^{c}F^{*} = \{x \in G : M(\chi_{{}^{o}F})(x) > 1 - \gamma\},\$$

where χ_{cF} is the characteristic function of the open set ^{c}F .

3.Main result

We state the four lemmas we need.

LEMMA 1 [6]. Assume F is a closed subset of G. Then there is a constant C such that

$$\mu({}^{\mathfrak{c}}F^*) \leq C\mu({}^{\mathfrak{c}}F),$$

where F^* is the set of points of global γ -density with respect to F.

LEMMA 2. Suppose $\alpha > 0$ is given Then there is a constant C so that whenever F is a closed subset of G and A(y,t) is any nonnegative measurable function on $G \times (0, \infty)$, then

$$\int_{F} \left(\int_{\Gamma_{\alpha}(x)} A(y,t) d\mu(y) dt \right) d\mu(x) \leq C \int_{\mathcal{R}_{\alpha}(F)} A(y,t) t^{n} d\mu(y) dt.$$

Proof. Fubini's theorem gives

$$\int_{F} \left(\int_{\Gamma_{\alpha}(x)} A(y,t) d\mu(y) dt \right) d\mu(x)$$
$$= \int_{G \times (0,\infty)} A(y,t) \left(\int_{F} \chi_{B(y,\alpha t)}(x) d\mu(x) \right) d\mu(y) dt,$$

and so, for given $(y,t) \in \mathcal{R}_{\alpha}(F)$, it will suffice to show that there is a constant C so that

$$\int_F \chi_{B(y,\alpha t)}(x) d\mu(x) \leq C t^n.$$

In fact, let $(y,t) \in \mathcal{R}_{\alpha}(F)$. Then

$$\int_F \chi_{B(y,\alpha t)}(x) d\mu(x) \leq \int_G \chi_{B(y,\alpha t)}(x) d\mu(x)$$

= Ct^n ,

as desired. The proof is therefore complete.

LEMMA 3 [6]. Suppose $\alpha > 0$ is given Then there are constants C and γ , $0 < \gamma < 1$, sufficiently close to 1, so that whenever F is a closed subset of G and A(y, t) is a nonnegative measurable function on $G \times (0, \infty)$, then

$$\int_{\mathcal{R}_{\alpha}(F^{\star})} A(y,t)t^{n} d\mu(y) dt \leq C \int_{F} \left(\int_{\Gamma(x)} A(y,t) d\mu(y) dt \right) d\mu(x),$$

where F^* is the set of points of global γ -density with respect to F.

LEMMA 4. Let f be a nonnegative function defined on G. Suppose

$$\Lambda_t(f)(x) = \frac{1}{t^n} \int_G \chi_{B(y,t)}(x) f(x) d\mu(x), \quad t > 0.$$

Then there is a constant C such that

$$\Lambda_{\alpha t}(f) \leq C \Lambda_t(M(f)).$$

Proof. If $f \geq 0$, then

$$\Lambda_{\alpha t}(f) \leq C\Lambda_t(\Lambda_{\alpha t}(f))$$

$$\leq C\Lambda_t(M(f)),$$

since $\Lambda_{\alpha t}(f) \leq CM(f)$. The proof is therefore complete.

Our main result is the following:

THEOREM 5. Let $0 and <math>\alpha > 1$. Then there is a constant C such that

$$||S_{\alpha}(f)||_{L^{p}(d\mu)} \leq C||S(f)||_{L^{p}(d\mu)}.$$

with $S(f) = S_1(f)$.

Proof. Assume first that $0 . For each <math>\lambda > 0$, we define the open set O by

$$O = {}^{\circ}F = \{x \in G : S(f)(x) > \lambda\}.$$

Let $O^* = {}^c F^*$. Then we take $F^* \subset F$ to be the set of points of global γ -density with respect to F. Apply Lemma 2 with $A(y,t) = |f(y,t)|^2 t^{-n-1}$ (and F^* in place of F), and we obtain

(3)
$$\int_{F^*} S_{\alpha}(f)(x)^2 d\mu(x) \leq C \int_{\mathcal{R}_{\alpha}(F^*)} |f(y,t)|^2 \frac{d\mu(y)dt}{t}$$

Next apply Lemma 3, again with $A(y,t) = |f(y,t)|^2 t^{-n-1}$, and we obtain

(4)
$$\int_{\mathcal{R}_{\alpha}(F^{*})} |f(y,t)|^{2} \frac{d\mu(y)dt}{t}$$
$$\leq C \int_{F} \left(\int_{\Gamma(x)} |f(y,t)|^{2} \frac{d\mu(y)dt}{t^{n+1}} \right) d\mu(x).$$

Then (3) and (4) imply that

(5)
$$\int_{F^*} S_{\alpha}(f)(x)^2 d\mu(x) \leq C \int_F S(f)(x)^2 d\mu(x).$$

Thus it follows from Lemma 1 and (5) that

(6)
$$\mu(\{x \in G \cdot S_{\alpha}(f)(x) > \lambda\})$$

$$\leq \mu(O^{*}) + \frac{C}{\lambda^{2}} \int_{F} S(f)(x)^{2} d\mu(x)$$

$$\leq C \left(\mu(O) + \frac{1}{\lambda^{2}} \int_{F} S(f)(x)^{2} d\mu(x)\right)$$

$$= C \left(\mu(\{x \in G : S(f)(x) > \lambda\}) + \frac{1}{\lambda^{2}} \int_{F} S(f)(x)^{2} d\mu(x)\right).$$

32

Multiply both sides of (6) by λ^{p-1} and integrate, then we get that

$$||S_{\alpha}(f)||_{L^{p}(d\mu)} \leq C||S(f)||_{L^{p}(d\mu)}$$

for $0 . Assume second that <math>2 \le p < \infty$. Then observe that

$$||S_{\alpha}(f)||^2_{L^p(d\mu)} = \sup_{\psi} \int_G S_{\alpha}(f)(x)^2 \psi(x) d\mu(x),$$

where the supremum is taken over all ψ which belong to $L^{r}(d\mu)$ with r dual to 2/p, and $||\psi||_{L^{r}(d\mu)} \leq 1$. Then it follows from Lemma 4 that

$$(7) \qquad \int_{G} S_{\alpha}(f)(x)^{2} \psi(x) d\mu(x) \\ = \int_{G \times (0,\infty)} |f(y,t)|^{2} \Lambda_{\alpha t}(\psi)(y) \frac{d\mu(y) dt}{t} \\ \leq C \int_{G \times (0,\infty)} |f(y,t)|^{2} \Lambda_{t}(M(\psi))(y) \frac{d\mu(y) dt}{t} \\ = C \int_{G} S(f)(x)^{2} M(\psi)(x) d\mu(x) \\ \leq C ||S(f)||_{L^{p}(d\mu)}^{2} ||M(\psi)||_{L^{r}(d\mu)} \\ \leq C ||S(f)||_{L^{p}(d\mu)}^{2} ||\psi||_{L^{r}(d\mu)} \quad (\text{by } r > 1) \\ \leq C ||S(f)||_{L^{p}(d\mu)}^{2}.$$

Taking the supremum over all ψ in (7). Then

$$||S_{\alpha}(f)||_{L^{p}(d\mu)} \leq C||S(f)||_{L^{p}(d\mu)}$$

with $2 \leq p < \infty$. The proof is therefore complete.

References

- 1 R R Coifman and G Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math vol 242, Springer-Verlag, Berlin, 1971
- 2 _____, Extensions of Hardy spaces and their use in analysis, Bull Amer Math Soc 83 (1977), 569-645.

Choon-Serk Suh

- 3. A Korányi and S Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann Scuola Norm Sup Pisa 25 (1971), 575-648
- 4. E M Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ Press, Princeton, N J, 1970.
- 5 J. Suerio, On maximal functions and Poisson-Szegö integrals, Trans 'Amer Math Soc 298 (1986), 653-669
- 6. C S Suh, Littlewood-Paley functions on groups of homogeneous type, Ph. D. Thesis, Kyungpook Nat'l Univ, 1993

Department of Mathematics Kyungpook National University Taegu 702-701, Korea