ON THE PARAMETER SPACES FOR TOPOLOGICAL TYPE (1,1)

GYUNGSOO WOO AND INOK JIN

1. Introduction

A Riemann surface is a one-dimensional complex analytic manifold. A Riemann surface S is of (topological) type (g, n) if S is conformally a compact surface of genus q with n conformal discs removed.

This paper is an exploration of the space of Riemann surfaces of topological type (1, 1); that is, the space of distinct conformal structures on a torus with one boundary component. A Fuchsian group is any discontinuous group contained in the hyperbolic group. The hyperbolic group is the group of operations which change z to $\frac{az+b}{cz+d}$ and which leaves the fundamental circle fixed.

A Fuchsian group is completely determined when we know its generators, since by combining them in all possible ways we obtain all transformations in the group. In the Maskit's paper [5], he gave an explicit parametrization of the space of standard generators of Fuchsian groups representing tori with one boundary component. Here, we assume S is a Riemann surface whose universal covering space is the upper half plane U.

Let G be the Fuchsian group acting on U in such a way that U/G = S. In this paper, using Maskit's parameter space we are going to find some relations between the two generators $A = \begin{pmatrix} \lambda sx & x \\ \lambda s & x \end{pmatrix}$ and

 $B = \begin{pmatrix} 0 & x \\ -s & x(1+s) \end{pmatrix}$ with $\lambda = 1$ and to find the exact value of $\cos\theta$, where θ is the appropriate angle of intersection of the geodesic α and

Received March 6 1995.

Research supported by Changwon National University 1993

 β associated to A and B respectively. Moreover, we show α intersects β only once.

2. Main Results

In the Maskit's parmeter space

$$P = \{(x,s,\lambda) \in oldsymbol{R}^3 | x>1, s>0, \lambda \geq 1\}$$

for the Fuchsian groups of topological type (1, 1), if $\lambda = 1$ then U/G is a torus with one puncture and the group G can be generated by transformations

$$A = egin{pmatrix} \lambda s x & x \ \lambda s & x \end{pmatrix} ext{ and } B = egin{pmatrix} 0 & x \ -s & x(1+s) \end{pmatrix}$$

An easy calculation shows the following lemma.

LEMMA 1. If r_A and r_B are the repelling fixed points of A and B respectively and a_A and a_B are the attracting fixed points of A and B respectively, then

(a)
$$r_A = \frac{x(s-1) - \sqrt{x^2(s-1)^2 + 4sx}}{2s}$$
, $a_A = \frac{x(s-1) + \sqrt{x^2(s-1)^2 + 4sx}}{2s}$
(b) $r_B = \frac{x(s+1) + \sqrt{x^2(s+1)^2 - 4sx}}{2s}$, $a_B = \frac{x(s+1) - \sqrt{x^2(s+1)^2 - 4sx}}{2s}$
(c) $r_A < 0 < a_B < 1 < a_A < x < r_B$.

Proof. (a) From $A(z) = \frac{sxz + x}{sz + x} = z$, we have $sz^2 + (x - sx)z - x = 0$ Hence

$$z = \frac{x(s-1) \pm \sqrt{x^2(s-1)^2 + 4sx}}{2s}$$

Therefore

$$r_A = \frac{x(s-1) - \sqrt{x^2(s-1)^2 + 4sx}}{2s}$$
$$a_A = \frac{x(s-1) + \sqrt{x^2(s-1)^2 + 4sx}}{2s}$$

2

(b) Similarly for (a).

(c) By easy calculation we can show that

$$r_A < 0 < a_B < 1 < a_A.$$

To show $a_A < x$, that is, $\frac{x(s-1)+\sqrt{x^2(s-1)^2+4sx}}{2s} < x$ we use the fact that x > 1, then it can also be derived. Similarly we have $x < r_B$. Therefore, $r_A < 0 < a_B < 1 < a_A < x < r_B$.

THEOREM 2. If α and β are the geodesics associated to A and B respectively and θ is the appropriate angle of intersection of α and β then

$$\cos\theta = \frac{x(1-s^2)}{\sqrt{x^2(s^2-1)^2+16s^2(x-1)}}.$$

Proof. Draw two circles C_1 with center $Q(\frac{r_A + a_A}{2}, 0)$ and radius $\frac{a_A - r_A}{2}$, C_2 with center $R(\frac{a_B + r_B}{2}, 0)$ and radius $\frac{r_B - a_B}{2}$ and let P be the intersection point of two circles C_1, C_2 in the upper half-plane U.

At the point P, draw two tangent lines l and m with respect to the circles C_1 and C_2 respectively. Let θ be the angle between l and m as in the Figure 1. In the triangle PQR, if we let $\theta' = \angle QPR$ then we have $\theta' = (\frac{\pi}{2} - \theta) + \theta + (\frac{\pi}{2} - \theta) = \pi - \theta$. Hence $\cos \theta' = \cos(\pi - \theta) = -\cos \theta$. Since $\cos \theta' = \frac{\overline{PQ}^2 + \overline{PR}^2 - \overline{QR}^2}{2\overline{PQ} \cdot \overline{PR}}$ and

$$\overline{PQ} = \frac{a_A - r_A}{2} = \frac{\sqrt{x^2(s-1)^2 + 4sx}}{2s}$$

$$\overline{PR} = \frac{r_B - a_B}{2} = \frac{\sqrt{x^2(s+1)^2 - 4sx}}{2s}$$

$$\overline{QR} = \frac{a_B + r_B}{2} - \frac{r_A + a_A}{2} \frac{x(s+1)}{2s} - \frac{x(s-1)}{2s} = \frac{x}{s}$$

We have

$$\cos\theta = \frac{x(1-s^2)}{\sqrt{x^2(s^2-1)^2 + 16s^2(x-1)}}.$$

(Figure 1)

(Figure 2)

A canonical fundamental polygon D for G is the region bounded by the four hyperbolic lines, S_1 , T_1 , S_2 and T_2 in the upper half-plane U. S_1 is the line with endpoints at 0 and ∞ , T_1 is the line with endpoints at 1 and x, S_2 is the line with endpoints at x and ∞ and T_2 is the line with endpoints at 0 and 1.

THEOREM 3. Let α and β be as in the Theorem 2. Let the axis $r_A a_A$ of A intersects S_1 and T_1 at M_1 and N_1 respectively and the

axis $a_B r_B$ of B intersects S_2 and T_2 at M_2 and N_2 respectively. Then $A(M_1) = N_1$ and $B(M_2) = N_2$.

Proof. Let C_1 and C_2 be as in the Theorem 2. The hyperbolic line T_1 with endpoints 1 and x is a circle with center $(\frac{x+1}{2}, 0)$ and radius $\frac{x-1}{2}$, call it C_3 . The hyperbolic line T_2 with endpoints 0 and 1 is a circle with center $(\frac{1}{2}, 0)$ and radius $\frac{1}{2}$, call it C_4 . (see the Figure 2)

Then the coordinate for M_1 is $(0, \sqrt{\frac{x}{s}})$ since

$$\sqrt{(\frac{a_A - r_A}{2})^2 - (\frac{r_A + a_A}{2})^2} = \sqrt{\frac{x}{s}}$$

The coordinate for N_1 is $(\frac{x+xs}{x+s}, \frac{x-1}{x+s}s\sqrt{\frac{x}{s}})$. For, let (X, Y) be the coordinate for N_1 then from the circles C_1 and C_3 ;

$$\left(X - \frac{x(s-1)}{2s}\right)^2 + Y^2 \left(\frac{\sqrt{x^2(s-1)^2 + 4sx}}{2s}\right)^2$$
$$\left(X - \frac{x+1}{2}\right)^2 + Y^2 = \left(\frac{x-1}{2}\right)^2$$

We have $X = \frac{x+xs}{x+s}$ and $Y = \frac{x-1}{x+s}s\sqrt{\frac{x}{s}}$. e may wirte $z_1 = i\sqrt{\frac{x}{s}}$ for $M_1(0, \sqrt{\frac{x}{s}})$ and $z_2 = \frac{x+xs}{x+s} + i\frac{x-1}{x+s}s\sqrt{\frac{x}{s}}$ for $N_1(\frac{x+xs}{x+s}, \frac{x-1}{x+s}s\sqrt{\frac{x}{s}})$. So

$$A(z_1) = \frac{sxz_1 + x}{sz_1 + x} = \frac{sx(i\sqrt{\frac{x}{s}}) + x}{s(i\sqrt{\frac{x}{s}}) + x} = \frac{x + ix\sqrt{sx}}{x + i\sqrt{sx}}$$
$$= \frac{x + sx}{x + s} + i\frac{x - 1}{x + s}s\sqrt{\frac{x}{s}}$$
$$= z_2.$$

Thus $A(M_1) = N_1$.

Similarly, by considering the circles C_2 and C_4 we have that the coordinate for M_2 is $(x, \sqrt{\frac{x(x-1)}{s}})$, the coordinate for N_2 is $(\frac{x}{x+s(x-1)}, \frac{\sqrt{sx(x-1)}}{x+s(x-1)})$ and $B(M_2) = N_2$.

REMARK. From Theorem 3, we know that α is $r_A \hat{a}_A \cap D$ and β is $a_B \hat{r}_B \cap D$. Hence α intersects β only once at P. Therefore using Theorem 2 with the help of Wolpert's cosine formula [6] and Gardiner formula [2], we can find a Fuchsian group of type (1,1) whose Petersson inner product is 0 [4].

References

- 1. H. Cohn, Conformal mappings on Riemann surfaces, Dover Publ. Inc. New York, 1980
- 2 F P Gardiner, Schiffer's interior variation and quasiconformal mapping, Duke Math J 42 (1975), 371-380
- 3 G. M. Ljan, On Teichmüller space and Poincaré's θ -operator, Soviet Math. Dokl. 21 (1980), 260-262
- 4 G M. Ljan, T Y Seo and G S Woo, On the Poincaré series operator for Fuchsian groups of type(1,1) preprint
- 5 B Maskit, Parameters for Fuchsian groups II · topological type(1,1), Ann. Acad Sci Fenn Ser A I Math 14 (1989), 265-275
- 6. S Wolpert, On the symmetric geometry of deformations of a hyperbolic surface, Ann of Math 117 (1983), 207-234

Department of Mathematics Changwon National University Changwon 641–773, Korea