ON THE PARAMETER SPACES
 FOR TOPOLOGICAL TYPE $(1,1)$

Gyungsoo Woo and Inok Jin

1. Introduction

A Riemann surface is a one-dimensional complex analytic manifold. A Riemann surface S is of (topological) type (g, n) if S is conformally a compact surface of genus q with n conformal dises removed.

This paper is an exploration of the space of Riemann surfaces of topological type (1,1) ; that is, the space of distinct conformal structures on a torus with one boundary component. A Fuchsian group is any discontinuous group contained in the hyperbolic group. The hyperbolic group is the group of operations which change z to $\frac{a z+b}{c z+d}$ and which leaves the fundamental circle fixed.

A Fuchsian group is completely determined when we know its generators, since by combining them in all possible ways we obtain all transformations in the group. In the Maskit's paper [5], he gave an explicit parametrization of the space of standard generators of Fuchsian groups representing tori with one boundary component. Here, we assume S is a. Riemann surface whose universal covering space is the upper half plane U.

Let G be the Fuchsian group acting on U in such a way that $U / G=$ S. In this paper, using Maskit's parameter space we are going to find some relations between the two generators $A=\left(\begin{array}{cc}\lambda s x & x \\ \lambda s & x\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & x \\ -s & x(1+s)\end{array}\right)$ with $\lambda=1$ and to find the exact value of $\cos \theta$, where θ is the appropriate angle of intersection of the geodesic α and

[^0]β associated to A and B respectively. Moreover, we show α intersects β only once.

2. Main Results

In the Maskit's parmeter space

$$
P=\left\{(x, s, \lambda) \in \boldsymbol{R}^{3} \mid x>1, s>0, \lambda \geq 1\right\}
$$

for the Fuchsian groups of topological type (1,1), if $\lambda=1$ then U / G is a torus with one puncture and the group G can be generated by transformations

$$
A=\left(\begin{array}{cc}
\lambda s x & x \\
\lambda s & x
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
0 & x \\
-s & x(1+s)
\end{array}\right)
$$

An easy calculation shows the following lemma.
Lemma 1. . If r_{A} and r_{B} are the repelling fixed points of A and B respectively and a_{A} and a_{B} are the attracting fixed points of A and B respectively, then
(a) $r_{A}=\frac{x(s-1)-\sqrt{x^{2}(s-1)^{2}+4 s x}}{2 s}, \quad a_{A}=\frac{x(s-1)+\sqrt{x^{2}(s-1)^{2}+4 s x}}{2 s}$
(b) $r_{B}=\frac{x(s+1)+\sqrt{x^{2}(s+1)^{2}-4 s x}}{2 s}, \quad a_{B}=\frac{x(s+1)-\sqrt{x^{2}(s+1)^{2}-4 s x}}{2 s}$
(c) $r_{A}<0<a_{B}<1<a_{A}<x<r_{B}$.

Proof. (a) From $A(z)=\frac{s x z+x}{s z+x}=z$, we have $s z^{2}+(x-s x) z-x=0$ Hence

$$
z=\frac{x(s-1) \pm \sqrt{x^{2}(s-1)^{2}+4 s x}}{2 s}
$$

Therefore

$$
\begin{aligned}
& r_{A}=\frac{x(s-1)-\sqrt{x^{2}(s-1)^{2}+4 s x}}{2 s} \\
& a_{A}=\frac{x(s-1)+\sqrt{x^{2}(s-1)^{2}+4 s x}}{2 s} .
\end{aligned}
$$

(b) Similarly for (a).
(c) By easy calculation we can show that

$$
r_{A}<0<a_{B}<1<a_{A} .
$$

To show $a_{A}<x$, that is, $\frac{x(s-i)+\sqrt{x^{2}(s-1)^{2}+4 s x}}{2 s}<x$ we use the fact that $x>1$, then it can also be derived. Similary we have $x<r_{B}$. Therefore, $r_{A}<0<a_{B}<1<a_{A}<x<r_{B}$.

Theorem 2. If α and β are the geodesics associated to A and B respectively and θ is the appropriate angle of intersection of α and β then

$$
\cos \theta=\frac{x\left(1-s^{2}\right)}{\sqrt{x^{2}\left(s^{2}-1\right)^{2}+16 s^{2}(x-1)}} .
$$

Proof. Draw two circles C_{1} with center $Q\left(\frac{r_{A}+a_{A}}{2}, 0\right)$ and radius $\frac{a_{A}-r_{A}}{2}, C_{2}$ with center $R\left(\frac{a_{B}+r_{B}}{2}, 0\right)$ and radius $\frac{r_{B}-a_{B}}{2}$ and let P be the intersection point of two circles C_{1}, C_{2} in the upper half-plane U.

At the point P, draw two tangent lines l and m with respect to the circles C_{1} and C_{2} respectively. Let θ be the angle between l and m as in the Figure 1. In the triangle $P Q R$, if we let $\theta^{\prime}=\angle Q P R$ then we have $\theta^{\prime}=\left(\frac{\pi}{2}-\theta\right)+\theta+\left(\frac{\pi}{2}-\theta\right)=\pi-\theta$. Hence $\cos \theta^{\prime}=\cos (\pi-\theta)=-\cos \theta$. Since $\cos \theta^{\prime}=\frac{\overline{P Q}^{2}+\overline{P R}^{2}-\overline{Q R}^{2}}{2 \overline{P Q} \cdot \overline{P R}}$ and

$$
\begin{aligned}
& \overline{P Q}=\frac{a_{A}-r_{A}}{2}=\frac{\sqrt{x^{2}(s-1)^{2}+4 s x}}{2 s} \\
& \overline{P R}=\frac{r_{B}-a_{B}}{2}=\frac{\sqrt{x^{2}(s+1)^{2}-4 s x}}{2 s} \\
& \overline{Q R}=\frac{a_{B}+r_{B}}{2}-\frac{r_{A}+a_{A}}{2} \frac{x(s+1)}{2 s}-\frac{x(s-1)}{2 s}=\frac{x}{s} .
\end{aligned}
$$

We have

$$
\cos \theta=\frac{x\left(1-s^{2}\right)}{\sqrt{x^{2}\left(s^{2}-1\right)^{2}+16 s^{2}(x-1)}} .
$$

(Figure 1)

(Figure 2)

A canonical fundamental polygon D for G is the region bounded by the four hyperbolic lines, S_{1}, T_{1}, S_{2} and T_{2} in the upper half-plane U. S_{1} is the line with endpoints at 0 and ∞, T_{1} is the line with endpoints at 1 and x, S_{2} is the line with endpoints at x and ∞ and T_{2} is the line with endpoints at 0 and 1 .

Theorem 3. . Let α and β be as in the Theorem 2. Let the axis ${r_{A} \bar{a}_{A}}$ of A intersects S_{1} and T_{1} at M_{1} and N_{1} respectively and the
axis $a_{B^{T}} \overparen{ }_{B}$ of B intersects S_{2} and T_{2} at M_{2} and N_{2} respectively. Then $A\left(M_{1}\right)=N_{1}$ and $B\left(M_{2}\right)=N_{2}$.

Proof. Let C_{1} and C_{2} be as in the Theorem 2. The hyperbolic line T_{1} with endpoints 1 and x is a circle with center $\left(\frac{x+1}{2}, 0\right)$ and radius $\frac{x-1}{2}$, call it C_{3}. The hyperbolic line T_{2} with endpoints 0 and 1 is a circle with center $\left(\frac{1}{2}, 0\right)$ and radius $\frac{1}{2}$, call it C_{4}. (see the Figure 2)

Then the coordinate for M_{1} is $\left(0, \sqrt{\frac{x}{s}}\right)$ since

$$
\sqrt{\left(\frac{a_{A}-r_{A}}{2}\right)^{2}-\left(\frac{r_{A}+a_{A}}{2}\right)^{2}}=\sqrt{\frac{x}{s}} .
$$

The coordinate for N_{1} is $\left(\frac{x+x s}{x+s}, \frac{x-1}{x+s} s \sqrt{\frac{x}{s}}\right)$. For, let (X, Y) be the coordinate for N_{1} then from the circles C_{1} and C_{3};

$$
\begin{aligned}
& \left(X-\frac{x(s-1)}{2 s}\right)^{2}+Y^{-2}\left(\frac{\sqrt{x^{2}(s-1)^{2}+4} s x}{2 s}\right)^{2} \\
& \left(X-\frac{x+1}{2}\right)^{2}+Y^{2}=\left(\frac{x-1}{2}\right)^{2}
\end{aligned}
$$

We have $X=\frac{x+x s}{x+s}$ and $Y=\frac{x-1}{x+s} s \sqrt{\frac{x}{s}}$. e may wirte $z_{1}=\imath \sqrt{\frac{x}{s}}$ for $M_{1}\left(0, \sqrt{\frac{x}{s}}\right)$ and $z_{2}=\frac{x+x s}{x+s}+i \frac{x-1}{x+s} s \sqrt{\frac{x}{s}}$ for $N_{1}\left(\frac{x+x s}{x+s}, \frac{x-1}{x+s} s \sqrt{\frac{x}{s}}\right)$. So

$$
\begin{aligned}
A\left(z_{1}\right) & =\frac{s x z_{1}+x}{s z_{1}+x}=\frac{s x\left(\imath \sqrt{\frac{x}{s}}\right)+x}{s\left(\imath \sqrt{\frac{x}{s}}\right)+x}=\frac{x+\imath x \sqrt{s x}}{x+\imath \sqrt{s x}} \\
& =\frac{x+s x}{x+s}+i \frac{x-1}{x+s} s \sqrt{\frac{x}{s}} \\
& =z_{2} .
\end{aligned}
$$

Thus $A\left(M_{1}\right)=N_{1}$.
Similarly, by considering the circles C_{2} and C_{4} we have that the coordinate for M_{2} is $\left(x, \sqrt{\frac{x(x-1)}{s}}\right)$, the coordinate for N_{2} is $\left(\frac{x}{x+s(x-1)}, \frac{\sqrt{s x(x-1)}}{x+s(x-1)}\right)$ and $B\left(M_{2}\right)=N_{2}$.

Remark. From Theorem 3, we know that α is $r_{A} \bar{a}_{A} \cap D$ and β is $a_{B}{ }_{B}{ }_{B} \cap D$. Hence α intersects β only once at P. Therefore using Theorem 2 with the help of Wolpert's cosine formula [6] and Gardiner formula [2], we can find a Fuchsian group of type (1,1) whose Petersson inner product is 0 [4].

References

1. H. Cohn, Conformal mappings on Remann surfaces, Dover Publ. Inc. New York, 1980
2 F P Gardiner, Schiffer's interior variation and quasiconformal mapping, Duke Math J 42 (1975), 371-380
3 G. M Ljan, On Tezchmúller space and Poincaré's θ-operator, Soviet Math Dokl. 21 (1980), 260-262
4 G M. Ljan, T Y Seo and G S Woo, On the Poncaré serzes operator for Fuchsian groups of type(1,1) preprint
5 B Maskit, Parameters for Fuchsıan groups I - topological type(1,1), Ann. Acad Sci Fenn Ser A I Math 14 (1989), 265-275
2. S Wolpert, On the symmetric geometry of deformatzons of a hyperbolic surface, Ann of Math 117 (1983), 207-234

Department of Mathematics
Changwon National University
Changwon 641-773, Korea

[^0]: Recetved March 61995.
 Research suppoited by Clangwon National University 1993

