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1. Introduction and Preliminaries

It is known that the conjugate gradient(CG) method [1,2,8] converges
when this method is applied to solve linear systems of the form Ax=b,
where A is symmetric and positive definite. For some finite difference dis-
cretizations of elliptic problems, one gets positive definite matrices that
are almost symmetric. Practically, the CG method work these matrices.
However, the convergence of this method is not guaranteed theoretically.
In this paper, we prove that the CG method converge when the > matrix
norm of the non-symmetric part of a positive definite matrix is less than
some value related to the smallest and the largest eigenvalues of the sym-
metric part of the given matrix. We also illustrate numerical results for
the CG method.

For non-symmetric matrices, many iterative methods [4,7] have been
developed that come from the CG method by changing the number of
terms, the number of iterations, or the inner product and so forth. The
convergence of most of these CG-like methods were proven by the use of
Krylov space techniques. The convergence proof that we do in this paper is
done without the use of the Krylov space. Hence our setting and proof are
much different from those that are done so far about the CG-like methods
for non-symmetric matrices.

We begin with some notations. Let A be a positive definite matrix,
then A can be represented as

A=A, + An

where A s Al A At
+ and A, = —

As=—5 2
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are the symmetric and nonsymmetric parts of A respectively. Since A is
positive definite, the symmetric part A, is also positive definite. Thus
A, is invertible and the eigenvalues of A, are all positive real numbers.
Let Ay, ..., An be the eigenvalues of A, such that 0 < A\; < ...< A,, then
AT, ..., A7Y are the eigenvalues of A7
Define
(z,y) = 'y
as the Euclidean inner product of two vectors z,y € R™ and let

lz l:== v(z,2)
be the induced Euclidean norm. We need also the inner product
(z,9)s = (2, 47'y)
and the corresponding norm
Iz o= V(z,2),
The associated matrix norms are given by

I All= sup [|Az | and [ All.= sup || Az,

zlj=1 zlf,=1

The condition number of A, is defined as
w =l A Il 477 1= AaAT
Note that x > 1.

2. The CG Method for Slightly Nonsymmetric Matrices

We need the following lemmas to prove the theorem for the conjugate
gradient method.

LEMMA 2.1. For any vector z,
(1) (z,Apz)=0 and
(2) (z,Az) = (z,A,x)
Proof. (1) Since z*A,z is a real number,
t'Anz = (2'4qz) = 2 Afz = ~z'Apx

Hence (z,Anz) = 0.
(2) By (1), (z, A7) = (2, A7) + (7, Anz) = (2, 4,7).
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LEMMA 2.2. For any vector z,

Mz < (2, 42) < dn 2 |

Proof. Since the Rayleigh quotients of a symmetric matrix are bounded
by the smallest and the largest eigenvalues of the matrix,

(z, A,x) <

M S s <
Il |12

By Lemma 2.1, the claim follows.
LEMMA 2.3. For any vector z, the followings hold.
O Xz Pz 1327 2 |* and

@) MlzlEElz Pl |5

Proof. (1) Since the Rayleigh quotients of a symmetric matrix A; ! are
bounded by the smallest and the largest eigenvalues of the matrix,

g (@A)
ST SN
Thus
Ml Pz 3 AT = 1
(2) From (1),
(z,A;lm) -1
M £ [W] < Ap.

The Schwarz inequality for a symmetric positive definite matrix is
stated in the next lemma.

LEMMA 2.4. If P is a symmetric positive definite matrix, then

| (z, Py) |< \/(a:,Pa:)(y,Py) for any z and y.
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LEMMA 2.5. For any z and y,

(@9l < (e, Au2)(y, 477Y).
Proof. By Lemma 2.4,
(20| = (2, Au(45 )
< (2, A0)( 47y, A,(47)) = 1/ (2, Auz)( AT M, 0).

We will use the notations.

e:=|| An || and a;:=(rF, AP

LEMMA 2.6. For any positive integer k,

ak

< B T
el <A\ ST

Proof. By Lemma 2.1, Lemma 2.2 and Lemma 2.5,

iy VR4 P"Xf" A7
(p*, Ap*) ~ p* Ap")

(p*, A,pF)ak - / <. ] a
(p*, A.p*) (p*, Aap") A1 llp IR

LEMMA 2.7. For any positive integer k,
@, ") = (5, rh).
Proof. Note that for any k,
(pkark+1) = (pka Tk) - ak(pkvApk) =0

by the definition of aj.
Thus,

lak| =

(P*,r%) = (%, 7F) 4 Br—1 (P, 7%) = (rF,rF),
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LEMMA 2.8. For any positive integer k,

(p%, Ap*) = (p*, Ar%).

Proof. By the definition of g,
(p*+, Ap*) = (¥, Ap¥) + Br(p*, Ap*) = 0

for any k.
Hence,

(p*, Ap*) = (%, Ar%) + Bi_1 (P, Ap* 1) = (P, ArF)

LEMMA 2.9. For any positive integer k,

ak(pk, rk) > k1a¥

Proof. By Lemma 2.4 and Lemma 2.8,

(%, Awp*) = (p*, Aur*) < \J(5F, Aup*)(r¥, Aur®).
Using Lemma 2.1, we get
(p*, Ap*) < (r*, Ark) (2.1).

Hence, by (2.1), Lemma 2.2, Lemma 2.3 and Lemma 2.7,

B ) O Gt L U SO YIRS

k _k
k(Pr) = O 2 E A 2 A, 2 h,

With the above lemmas, the convergence for the CG method applied
to the linear system Ax=b is shown in the next theorem.
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THEOREM 2.10. If

Il An 1< Ar (—1 +V1+ n"l)
then the CG method, defined by

p°=r°=b-—A:c°

zk-}-l

= z* + ayp*
rktl = ok _ o Ap*

pHl = pk+l 4 g, ok

o = (p*, %)
"7 o*, Ap¥)
B, = _(r*, Aph)
(pk, Ap*)

converges.

Proof. We have

(rkt1,, ) =(rk — arAp*, AT1rF — ay AT ApY)
=(rk, A7'r%) — 2a0(Ap*, A7 rH) + o (4p", AT AP")
=(rk, AT71rk) — 20i(p*, rF) - 2a(Anp*, A71rF)
+ af(Ap*, p*) + ok (4p*, 47 Anp")
(2.2) =(r*, A7 rF) — ai(p*, %) — 200 (4np", 471F)
+ o} (Ap*, AT AnpY)
=(rk, A7 rF) - ar(p*,r*) - 20k (Anp", A7lrR)
+ a%(Pka Anpk) + alzc(AnPk’ A:lAnPk)
=(r* A71r%) — ai(p*,r*) - 2a;(Anpt, A:lrk)
+ a}(Anp*, A7 Anp®).

By lemma 2.3,

(Anp*, A7 Anp") S AT [ Anp® IPSATE NP5 IR (23)
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Using (2.3) and Lemma 2.4,

(Anp*, A7 9] < /(Anph, A7 Anpt)at < \AT2E2 || P 20k (24).

By Lemma 2.6, Lemma 2.9, and equations from (2.2) to (2.4), one gets

a*t! < af —kTlak 42 ——q-‘i?—-—z—\/)\;lﬂ | % |2 a*
Avilek ||
k

2
el I

= a*(1 -k 420 Te+ A2
For convergence, we require
1—s 1+ 20 le+ A% < 1
A2 + 20 te— k"1 <0
€ +2xe—xk"1A <0

Hence, the sufficient condition for convergence is

€< - + VA%‘FK—])\% = )\1(-—1 + V1 +l€—l).

3. Numerical Results
Consider the one-dimensional boundary value problem given by

—Vug, +u, = f(z) for 0<z<1 (3.1)

w(0) = 4, u(l)=

where A, B are constants and f is a given function. The equation (3.1)
describes the motion of a fluid with viscosity.

We wish to find numerical solution of the equation (3.1) by finite dif-
ference method.

Let

up = u(z), fi = f(z).
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Replacing u; and u,; by backward difference approximation and central
difference approximation respectively, the equation (3.1) is

Uppr — 22U+ Uiy U — Uy
—y hZ + h = fl (l == 1, ...,n et 1)
Ug = A,u,, = B.

Simplifying the above expression,
~(W+h)ut1+ v+ Ruy—vur =h*f; (I=1,.,n-1) (3.2).

If
[ 2v+h —v \
—v—h 2v+h -V
A=
—v~—h 2v+4+h —-v
\ -v—h 2+ h/
" R*fi+ (v + h)A
. K2 f
Uz
U= . and F =
un_l hzfn-—2
h2fn—l +vB
this equations (3.2) can be written in the matrix notation
AU = F
By the definition of A, and A,, we can write
2 -1
-1 2 -1
h .
Aa = (V + "2‘) .
-1 2 -1
-1 2
0 1
-1 0 1
h
and A, = "2- ’ .
-1 0 1
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Since

is an (n-1)x(n-1) matrix, there should be n-1 eigenvalues and eigenvectors.
It is easy to check that the eigenvectors are given by

1 (a=1,...,n—1)

vg = (sin i

n
and the corresponding eigenvalues are
Aa = 2(1 — cos £l—‘{[).
n

Hence, we can see that

Amin(4s) = (v + g—))\l = (2v + h)(1 — cos ZrE) = (2v + h)(1 — coswh)

Amas(As) = (v + g)x,._l = (20 + B)(1 +cos 1) = (20 + h)(1 + cosh).
Thus

—1 -1 1~ coswh
IC(A,) = Ami"Ama: = m
If
0 1
-1 0 1
B, = ", .
-1 0 1
-1 0

then || By, || is the largest singular value of B,. Using the mathematica,
we can find an approximation of || B, ||. In case of the equation (3.1), the
condition of theorem 2.10 is

-g | Br ||< (2v + h)(1 — cos wh) (-—1 + ‘/T_—{:::gc;g;r—};) (3.3).
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/ 2
Mc—-(].--'COSﬂ'h) (”1+ m),

then the expression (3.3)is v > M.,

Let

where

Mc:z""‘c‘“Bn ““5

Mathematica has been used to find M. for some values of h, which we
show in the next table.

Table 3.1
v for the CG method
hi| 5 % )

<

78.5858 649.324 2205.55

To show that the CG method converges when

v > M,

we choose the numerical problem as follows :
1 . .
u(z) = 5 sin 2rz , f(z) =27vsin2nrz + cos2nz (3.4)

Since the functions u(x) and f(x) defined on [0,1] are given with change
of sign and is not a brief polynomial form, (3.4) is used to discuss the
numerical methods in this thesis.

Table 3.2 shows the numerical results when applied to the CG method
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Table 3.2-1
The CG method with tolerance = 10~
(b = 1/10) k
v No. of [3-error
Iterations
79 19 0.00482118
100 18 0.00484001
500 15 0.000489684
1000 14 0.00490376
5000 14 0.00490961
10000 13 0.00491033
50000 11 0.00491091
Table 3.2-2
The CG method with tolerance = 10™°
(h = 1/20)
v No. of l2-error
Iterations
650 29 0.00101046
700 29 0.00101079
1000 29 0.00101209
5000 27 0.00101452
10000 26 0.00101483
50000 21 0.00101506
100000 19 0.00101507
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